Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Физики МФТИ разработали сверхчувствительный наномеханический биосенсор

Ключевые слова:  Анализ химического состава веществ, Исследования, МФТИ, Наномеханический сенсор, Разработка

Опубликовал(а):  Доронин Федор Александрович

05 июля 2015

Молодые исследователи из лаборатории нанооптики и плазмоники МФТИ Дмитрий Федянин и Юрий Стебунов разработали сверхкомпактный высокочувствительный наномеханический сенсор для анализа химического состава различных веществ. Их разработка также способна обнаруживать биологические объекты: например, маркеры вирусных заболеваний, появляющихся в результате отклика иммунной системы на такие неизлечимые и трудноизлечимые заболевания, как СПИД, гепатиты, герпес и многие другие.

Предложенный сенсор позволит обнаруживать онкомаркеры, присутствие которых в организме сигнализирует о появлении и росте раковой опухоли. Чувствительность прибора лучше всего характеризует одна цифра: по оценкам авторов, датчик способен фиксировать в реальном времени появление частиц массой всего в несколько килодальтон. Один дальтон это, грубо говоря, масса одного протона или нейтрона, а несколько тысяч дальтон соответствуют массе единичных молекул белков или ДНК. Таким образом, новый сенсор позволит диагностировать болезни задолго до того, как они станут доступны для обнаружения любыми другими методами, что откроет дорогу медицинской диагностике будущего.

Устройство, которое описано в статье, опубликованной в журнале Scientific Reports, представляет собой оптический, или, точнее, оптомеханический чип. «Мы давно следим за прогрессом в области микро- и наномеханических биосенсоров, но до сих пор еще не было создано простой и масштабируемой технологии для параллельного мониторинга, готовой к работе вне лабораторных условий, поэтому нашей целью была не только высокая чувствительность и компактность сенсора, но также масштабируемость и совместимость со стандартными технологиями микроэлектроники», объясняют исследователи.

В отличие от аналогичных устройств, в предложенном сенсоре отсутствуют сложные узлы, и он изготавливается в стандартном КМОП-техпроцессе, используемом в микроэлектронике. Несмотря на это, в сенсоре нет ни единой электрической цепи, а конструкция сенсора настолько проста, что его можно разделить всего на две детали: фотонный (или плазмонный) нановолновод для управления оптическим сигналом и нависающий над этим волноводом кантилевер.

Кантилевер (дословно «балка») это длинная и тонкая полоска, неразрывно связанная с чипом. Он имеет микроскопические размеры (5 микрометров в длину, 1 мкм в ширину и толщиной всего 90 нм), но принципиально поведение кантилевера не сильно отличается от свешенной с края стола и прижатой к столешнице линейки: висящий конец может совершать механические колебания на определенной частоте. Отличия между рассматриваемым кантилевером и линейкой, зажатой с одного конца, по сути дела, только в размерах и частоте механических колебаний, которая определяется материалом и геометрическими параметрами: если обычная линейка колеблется на частоте в десятки герц, то микроскопический кантилевер характеризуется уже мегагерцевой частотой. Иными словами, он совершает несколько миллионов колебаний в секунду!

В проходящем под кантиливером волноводе распространяются сразу два оптических сигнала: первый приводит кантилевер в движение, а второй позволяет считывать информацию об этом движении. Неоднородное электромагнитное поле управляющего сигнала наводит дипольный момент (или, говоря проще, заставляет положительные и отрицательные заряды расходится в разные стороны; комбинацию двух зарядов на некотором расстоянии друг от друга называют диполем) на кантилевере и одновременно воздействует на этот диполь, заставляя кантилевер двигаться.

Синусоидальный управляющий сигнал раскачивает кантилевер, и тот начинает совершать колебания с амплитудой до 20 нанометров. В свою очередь, движущийся кантилевер воздействует на второй, считывающий, оптический сигнал, выходная мощность которого зависит от положения кантилевера.

Ключевую роль в эффективной раскачке кантилевера играют высоколокализованные оптические моды нановолноводов, создающие большой градиент интенсивности электрического поля. Поскольку характерный размер изменений электромагнитного поля в таких системах исчисляется десятками нанометров, исследователи используют термин «нанофотоника», и это тот случай, когда приставка «нано» вовсе не дань моде! Без уменьшения волновода с кантилевером до наномасштабов чип попросту не смог бы работать большой кантилевер нельзя раскачать свободно распространяющимся светом, да и влияние химических изменений его поверхности на частоту колебаний стало бы не столь заметно.

Колебания кантилевера позволяют определять химический состав той среды, в которой находится чип. Помогает в этом то, что частота механических колебаний зависит не только от размеров и свойств материалов, но и от массы всей колебательной системы, которая меняется в случае химической реакции кантилевера со средой. Покрывая кантилевер разными реагентами, можно добиться его избирательной реакции с определенными веществами или даже биологическими объектами. Если на кантилевер нанести антитела к определенным вирусам, то он выловит эти вирусные частицы из анализируемой среды. Колебания с прикрепившимися к балке вирусами или просто со слоем из продуктов реакции будут происходить с меньшей (или большей) амплитудой, и электромагнитная волна, распространяющая по волноводу, станет рассеиваться кантилевером несколько иначе, что фиксируется на выходе схемы по изменению интенсивности считывающего сигнала.

Проведенные исследователями расчеты показали, что новое устройство будет сочетать высокую чувствительность со сравнительной простотой изготовления и миниатюрными размерами, позволяющими использовать его в качестве элемента любых портативных устройств (например, смартфонов, носимой электроники и др.), которые могут работать, в том числе, в полевых условиях. На одном чипе размером в несколько миллиметров можно будет собрать вместе множество (а именно до нескольких тысяч) подобных сенсоров, настроенных на обнаружение различных частиц или молекул. При этом, благодаря простоте конструкции, ожидается, что цена устройства будет слабо зависеть от количества сенсоров, что выгодно отличает его от конкурентных решений.

Работа финансировалась из средств, полученных в рамках проектной части государственного задания Минобрнауки РФ № 16.19.2014/К.

P.S. Прочитать оригинальную статью исследователей можно в журнале Scientific Reports.


Источник: МФТИ




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Тесное соседство
Тесное соседство

Стань частью первой в России магистерской программы в области LED- технологий!
Стать участником первой в России магистерской программы в области LED- технологий можно уже на первой волне вступительных испытаний 8 и 9 июля, подав документы в Приемную комиссию Университета ИТМО (г. Санкт-Петербург, Кронверкский проспект, д. 49). Документы также можно подать почтой.

20 июня в МГУ стартовала приёмная кампания
20 июня в МГУ имени М.В. Ломоносова стартовала приёмная кампания. В новому учебном 2019/2020 году в Московский университет поступят около 10 тысяч абитуриентов, откроются 4 новых направления подготовки и свыше 10 образовательных программ.

Коллекция статей в Frontiers in Chemistry, посвященная Международному Году Периодической Таблицы Элементов
Открыт прием статей в коллекцию Frontiers in Chemistry (Open Access, IF 4.155), посвященной 150 - летию Периодической Таблицы Элементов.

Новые гибридные перовскитоподобные материалы для солнечной энергетики
Тарасов Алексей Борисович, Постнаука
Как сохранить энергию солнца или ветра? Как может измениться стационарная энергетика в будущем? В проекте «Мир вещей. Из чего сделано будущее» совместно с Фондом инфраструктурных и образовательных программ (группа РОСНАНО) Постнаука рассказывает о последних открытиях и перспективных достижениях науки о материалах.

Материалы к защитам квалификационных работ бакалавров на ФНМ МГУ в 2019 году
Коллектив авторов
4-7 июня 2019 г. (11-00) в аудитории 221 корпуса Б пройдут защиты ВКР бакалавров ФНМ МГУ.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2019 году
Семенова Анна Александровна
21-24 мая 2019 года в лабораторном корпусе Б пройдут защиты магистерских диссертаций выпускниками ФНМ МГУ.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.