Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Принцип разделения микрочастиц. Жидкость в канале движется в направлении, указанном стрелкой. Нижняя стенка канала представляет собой супергидрофобную текстуру и обеспечивает изменение направления тока жидкости в непосредственной близости от этой стенки. Частицы разных размеров (зеленый и красный шарики) с разной скоростью опускаются вниз: более крупные и тяжелые частицы опускаются быстрее. Поэтому на них возникающий у нижней стенки снос действует дольше

Супергидрофобность способствует эффективному разделению микрочастицы

Ключевые слова:  Lab on a Chip, Исследования, периодика, Разделение микрочастиц, Супергидрофобные поверхности

Автор(ы): Тарас Молотилин

Опубликовал(а):  Доронин Федор Александрович

05 июля 2015

В журнале Lab on a Chip появилась статья группы физиков под руководством Ольги Виноградовой, в которой предложен новый метод для разделения микрочастиц в тонких каналах. Среди множества работ из этой же области новый подход выделяется тем, что использует супергидрофобные поверхности. Эти системы за последние десятилетия завоевали пристальное внимание теоретиков, но редко встречались в экспериментальных работах — особенно связанных с поведением частиц. В новой работе удалось совместить теорию с практикой и к тому же достигнуть результатов, недоступных для других аналогичных методов.

Методы разделения (или фракционирования) микро- и наночастиц становятся всё более и более востребованными. В современных исследованиях, будь то коллоидный синтез или анализ биологических проб, всё чаще бывает необходимо разделить частицы по размерам, форме, механическим или каким-либо другим свойствам.

Например, один из ранних методов диагностирования рака предполагает мониторинг раковых клеток, циркулирующих в крови пациента. Эти клетки являются фрагментами опухоли, которые вымылись в основной кровоток. Проблема в том, что простого обнаружения клеток в крови оказывается мало: нужно также знать их точную концентрацию, а в идеальном случае — выделить эти клетки в чистом виде для дальнейшего анализа.

Существует ряд иммунохимических методов, позволяющих проводить количественное разделение раковых клеток и, к примеру, лейкоцитов. В этом случае клетки опухоли помечают специфическими антителами, которые служат метками для последующего выделения. Однако этот метод может повлиять на химический состав клетки, изменить ее биологические свойства, что в дальнейшем сделает невозможным или напрасным ее анализ.

Для преодоления этих недостатков созданы «мягкие» методы фракционирования, которые никак не изменяют частицы во время разделения. Большинство методов из этого класса основаны на гидродинамических эффектах. В таких подходах частицы разделяются благодаря тому, что они оказываются в участках жидкости с разным характером течения. Важным преимуществом этих методов является то, что они не затрагивают химический состав разделяемых частиц, а используют лишь их механические свойства.

Среди гидродинамических методов наиболее распространено инерционное разделение (см.: D. Di Carlo, 2009. Inertial microfluidics) и фракционирование во внешних полях (Field flow fractionation, см. также: T. Kowalkowski et al., 2007. Field-Flow Fractionation: Theory, Techniques, Applications and the Challenges). В первом случае частицы делятся по вертикальной координате из-за инерционной подъемной силы, возникающей при течении жидкости с большой скоростью. Во втором случае разделение происходит из-за того, что внешнее поле (гравитационное, электрическое или магнитное), действуя с разной силой на частицы разного размера, вовлекает их в участки течения с разной скоростью. В итоге разделение частиц происходит или по вертикали, но с небольшим разрешением (см.: N. Pamme, 2007. Continuous flow separations in microfluidic devices), или по времени, что делает невозможным непрерывное поточное фракционирование — частицы нужно разделять «порциями».

Но для обоих упомянутых методов из-за небольшого разрешения, близкого к размеру частиц, нужны дополнительные методы, усиливающие основной эффект. Например, этого можно добиваться за счет особой геометрии стенок, поворотов канала, наличия выступов и бороздок и так далее. Присутствие таких особенностей затрудняет теоретическое описание системы, поэтому зачастую методы, основанные на фракционировании во внешних полях, являются полуэмпирическими и применимыми только к отдельным классам разделяемых частиц.

В Лаборатории физикохимии модифицированных поверхностей (ИФХЭ РАН) под руководством профессора Ольги Виноградовой разработали новый подход к фракционированию, сочетающий в себе сразу два преимущества: во-первых, он позволяет разделять частицы поперек потока, что резко упрощает их дальнейший сбор по фракциям, а во-вторых, метод удалось полностью описать теоретически, что исключает элемент «подбора» и позволяет точно рассчитывать параметры установки и эксперимента.

В основе предложенной методики лежит использование супергидрофобных структур в качестве материала для одной из стенок канала. Эти структуры известны прежде всего тем, что позволяют существенно снизить вязкое сопротивление при прокачке жидкости через тонкие каналы. Подобный эффект достигается за счет чередования участков твердых стенок и полостей, заполненные газом, на которых жидкость проскальзывает практически без трения.

Оказалось, что направленная структура газовых полостей («полосатая» текстура или «страйпы») позволяет не только снизить вязкое сопротивление, но и управлять направлением и характером течения вблизи стенки. Так, если полосатую текстуру повернуть под углом 45° к основному направлению канала, жидкость вблизи поверхности будет поворачиваться вдоль полосок, и общий поток в канале будет представлять собой спираль.

Если на входе в канал запускать смесь частиц разного размера, под действием силы тяжести они начнут оседать с разной скоростью. Чем больше частица, тем быстрее она осядет: сила тяжести пропорциональна объему (то есть радиусу в третьей степени), а сила сопротивления — радиусу (в первой степени). Чем быстрее частица приблизится к нижней стенке, тем раньше она начнет поворачивать в направлении полосок из-за особенностей течения.

При наблюдении за частицами в конце канала оказалось, что крупные частицы сносились гораздо дальше в сторону, чем мелкие (рис. 1). Разброс составлял до нескольких десятков микрон, тогда как радиусы частиц лежали в диапазоне от одного до пяти микрон. Простым разветвлением канала в конце можно было добиться эффективного фракционирования частиц по размерам.

В оригинальной публикации было приведено теоретическое описание изложенного эффекта, а также результаты его экспериментальной проверки. Авторам удалось добиться разделения частиц, отличающихся по радиусу всего на 0,5 микрона.

Предложенный метод может стать очередным важным шагом в развитии микрофлюидики — области, стремящейся к созданию миниатюрных устройств, сочетающих в себе функции компьютера, а также синтетической и клинической лабораторий. В будущем, если все пойдет хорошо, «лаборатория на чипе» с функцией выделения, к примеру, раковых клеток может оказаться реальностью.

Источник: E. S. Asmolov, A. L. Dubov, T. V. Nizkaya, A. J. C. Kuehne, O. I. Vinogradova. Principles of transverse flow fractionation of microparticles in superhydrophobic channels // Lab on a Chip. 2015. V. 15. P. 2835–2841.

См. также:
P. Sajeesh and A. K. Sen. Particle separation and sorting in microfluidic devices: a review // Microfluidics and Nanofluidics. 2014. V. 17. P. 1–52.


В статье использованы материалы: Элементы


Средний балл: 10.0 (голосов 1)

 


Комментарии
Balabanov Victor, 02 августа 2015 17:33 
Еще один пример прикладного использования эффекта лотоса.
Палии Наталия Алексеевна, 06 сентября 2015 13:43 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Горящая роза
Горящая роза

Технологическое образование школьников для новой технологической эпохи
Самарский филиал Российской академии народного хозяйства и государственной службы (РАНХиГС) вместе с Фондом инфраструктурных и образовательных программ (ФИОП) провели 2–3 ноября 2020 году Международную научно-практическую конференцию «Технологическое образование школьников для новой технологической эпохи».

Нанотехнологии ужасные и могучие
В том, что касается осмысления новых технологий, научная фантастика отчетливо напоминает жертву БАР — очень модного сейчас биполярного аффективного расстройства. Писатели мечутся между двумя крайними состояниями, двумя полюсами: преувеличенным дофаминовым восторгом и тревожной депрессией, беспросветным ужасом перед грядущим. Чем больше ожиданий от технологии, тем глубже раскол, сильнее поляризация, реже «светлые промежутки» — и последние полвека нанотехнологии определенно входят в приоритетный список.

Кадровое сопровождение инновационный проектов
Фонд инфраструктурных и образовательных программ (ФИОП) Группы РОСНАНО приглашает 25 ноября 2020 года представителей высокотехнологичных компаний и технических вузов на Всероссийскую онлайн-конференцию «Кадровое сопровождение инновационных производств».

Зоологический подход и искусственное обоняние
Пресс-служба МГУ
Ученые химического факультета и НИИЯФ МГУ имени М.В. Ломоносова сумели повысить способность искусственного обоняния идентифицировать близкие по химическим свойствам газы - метан и пропан. Ключом к успеху стал подход к обработке данных химических сенсоров, ранее применявшийся для анализа эволюционного родства животных, ископаемых видов, а также предков человека.

Зоопарк в багаже нанотехнолога
Гудилин Е.А.
Серебро в форме наночастиц - это целый мир, их форма и размер, а также то, как они вместе сосуществуют, играют очень большую роль в области их практического применения. И до сих пор это огромное разнообразие важно, и до сих пор оно оправдывает себя, и это редкий пример, когда именно наночастицы, а не только консолидированные наноматериалы и наноструктуры нужны для практики.

Универсальная система анализа метаболитов
Пресс-служба МГУ
Сотрудники химического факультета МГУ разработали аналитическую схему, позволяющую по химическим «отпечаткам пальцев» делать заключения о протекающих в организме процессах. Схема пригодится и врачам, и фармакологам, и экологам, и даже пищевикам.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.