Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Вихрь разрезали на дольки

Ключевые слова:  МГУ имени Ломоносова, Микроканалы, Микрофлюидика, Физика

Опубликовал(а):  Доронин Федор Александрович

17 апреля 2015

Многие проблемы, связанные с перемешиванием жидкости в микроканалах, можно решить, правильно «организовав» неоднородное скольжение на стенках этих каналов. К такому выводу пришла объединенная группа российских и немецких исследователей, которую возглавила профессор физического факультета Московского государственного университета Ольга Виноградова. Разработанная группой теория была опубликована в последнем номере журнала Physical Review E (импакт-фактор – 2,3).

Эта работа относится к сфере микрофлюидики – многообещающей и быстро развивающейся междисциплинарной области исследований, изучающей течение жидкости в микроканалах. Микрофлюидика особенно востребована в химии и биомедицинских исследованиях, где возникает необходимость провести химический синтез малых доз вещества или выполнить разделение частиц биоматериала.

«Микрофлюидика лежит в основе так называемых лабораторий на чипе – миниатюрных приборов, позволяющих осуществлять многостадийные химические процессы, включающие химические реакции, перемешивание, концентрирование и сепарацию на одном чипе размером с маленькую монетку», - говорит Ольга Виноградова. «Такие системы перспективны не только в качестве микрореакторов в синтетической химии, но и в качестве портативных аналитических устройств, например, для диагностики онкологических и инфекционных заболеваний.»

Одной из проблем, с которой сталкиваются исследователи при работе с микроканалами, является затрудненное перемешивание жидкостей. Дело в том, что течение в таких каналах является ламинарным, то есть слоистым. При ламинарном течении отсутствует конвекция, поэтому жидкости смешиваются очень медленно, лишь за счет диффузии.

Физикам удалось найти простое решение проблемы, основанное на использовании супергидрофобных поверхностей. Такие поверхности изготавливаются из гидрофобного (водоотталкивающего) материала и при этом являются микрошероховатыми. В результате в углублениях текстуры супергидрофобной поверхности удерживаются микропузырьки воздуха. Наличие такой «воздушной подушки» делает супергидрофобную поверхность очень скользкой. В данной работе ученые предложили использовать супергидрофобную текстуру в виде параллельных бороздок, повернутых под некоторым углом к оси канала, причем на верхней стенке бороздки были повернуты вправо, а на нижней - влево. Такие бороздки придали стенкам канала анизотропные свойства: вдоль них жидкость течет быстрее, чем поперек. Кроме того, оказалось, что помимо основного потока вдоль оси канала возникает вторичное сдвиговое течение жидкости в поперечном направлении. В результате вблизи стенок жидкость начинает немного закручиваться, подобно тому, как пуля закручивается, двигаясь по нарезному стволу винтовки. Исследуя образовавшийся вихрь, ученые обнаружили очень интересный эффект:

«Если жидкость движется очень медленно, то в канале образуется единый, очень вытянутый поперечный вихрь,» - сообщила Татьяна Низкая, соавтор статьи из ИФХЭ РАН. – «Однако уже при повышении скорости течения жидкость начинает «заносить» на поворотах».

«На этот вихрь накладывается множество мелких, ограниченных соседними бороздками, то есть в потоке создается «искусственная турбулентность» - уточнил Евгений Асмолов, соавтор статьи из ИФХЭ РАН и ЦАГИ. - «Такие течения могут оказаться полезными для перемешивания жидкостей или для разделения частиц разного размера».

Вместе с соавторами из Университета Майнца (Германия) было проведено компьютерное моделирование предсказанного эффекта методом диссипативной динамики частиц. Ученые проанализировали траектории движения модельных частиц жидкости в микроканале и изучили зависимость формы и числа вихрей от скорости потока. По результатам моделирования авторы сделали вывод, что существует критическое значение скорости, при котором один большой вихрь разбивается на множество мелких, что в итоге приводит к новому эффективному механизму перемешивания жидкости.

«Уже существуют системы для эффективного перемешивания в микроканалах, основанные на использовании специального «узора» поверхности канала. Например, чтобы закрутить жидкость, специальные препятствия на дне канала располагают «в ёлочку». При этом вихрь возникает за счет боковых стенок.» - говорит Татьяна Низкая. – Наш метод намного проще: достаточно лишь взять две супергидрофобные плоскости с полосками газа и повернуть их под углом друг к другу. Кроме того, разбиение вихря на много мелких позволяет осуществлять перемешивание одновременно по всей ширине канала».





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

nano-Вулкан
nano-Вулкан

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.