Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Ученые создали квадратный лед с помощью графена

Ключевые слова:  Nature, Гейм, Графен, Двумерный материал, Исследования

Опубликовал(а):  Доронин Федор Александрович

27 марта 2015

Меджународная группа исследователей, руководили которой специалисты из университета Манчестера, объявила об открытии новой формы льда — "квадратной". В рамках эксперимента химики создали микроскопический сэндвич, зажав каплю воды между двумя пластами графена. Двумерный материал позволил раскрыть новые свойства льда, которые найдут своё применение не только в фундаментальной науке, но и в современных технологиях.

Учёные сообщают, что помимо того, что графен прекрасно проводит электричество и является одним из прочнейших материалов в мире, он также обладает уникальным свойством оказывать огромное давление на молекулы, захваченные между двумя пластами материала.

Эксперименты с графеном и каплями воды показали, что жидкость просачивается между пластами двумерного материала очень быстро (что и указывает на огромное давление, оказываемое этими пластами на воду). Это свойство раскрывает большой потенциал графена к применению в качестве опреснительных мембран для очистки воды.

Ещё в 2012 году Андрей Гейм и его коллеги из Манчестерского университета, которые получили Нобелевскую премию за открытие и изучения графена, проводили эксперименты с графеном и водой в различных агрегатных состояниях.
Тогда учёные обнаружили, что водяной пар может проходить через ламинированные листы оксида графена. Два года спустя исследователи увидели, что и жидкая вода может проходить сквозь графен, хотя двумерный материал задерживает все остальные молекулы.

Компьютерное моделирование показало, что вода формирует слои квадратного льда между графеновыми листами. Нажатие на пласт такого льда с одного конца заставляет двигаться и все остальные молекулы застывшей воды, словно вагоны в скоростном поезде.

Однако Гейм считает, что нельзя на все 100% доверять результатам молекулярно-динамического моделирования, и потому решил провести ещё один эксперимент.

Учёные сбросили один микролитр воды на лист графена, а затем прижали получивший бутерброд сверху ещё одним листом углеродного материала. Весь процесс протекал при комнатной температуре.

По мере увеличения давления вода стала постепенно испаряться, а листы графена приближаться друг к другу до тех пор, пока расстояние между ними не составило один нанометр, а в "сэндвиче" не образовались кармашки с водой.

Просвечивающая электронная микроскопия показала, что в образовавшихся кармашках присутствует "квадратный" лёд.

Поясним, почему получаемая структура называется квадратной. Обычно, когда вода собирается в микроскопические капли всего из восьми молекул, формируется куб. Учёные были крайне удивлены, увидев вместо кубов квадраты.

Как сообщает сайт AlphaGalileo, квадратный лёд решили квалифицировать как новую кристаллическую фазу, помимо 17 других, ранее наблюдавшихся в рамках экспериментов.

Квадратный лёд сильно отличается от обычного по своим характеристикам. В обычной V-образной молекуле воды (H2O) атом кислорода связан с двумя атомами водорода крепкими связями. Связь с атомами водорода в соседних молекулах у атома кислорода оказывается слабой. Если иметь дело со льдом, а не жидкой водой, то можно наблюдать четыре связи атома кислорода (с "родными" и соседними атомами водорода) в тетраэдрической форме — то есть, в форме пирамиды.

Но в слое квадратного льда, все атомы лежат в одной плоскости с прямым углом между каждой кислородно-водородной связью. Образцы, созданные Геймом и его коллегами, содержали один, два или три таких слоя, где атомы кислорода в соседних слоях располагались прямо друг над другом.

Команда химиков подсчитала, что графеновые листы должны оказывать давление, в 10 тысяч раз превышающее атмосферное, чтобы заставить воду вести себя подобным образом. Взаимное притяжение электронных облаков вызывает появление ван-дер-ваальсовых сил, в результате чего меняется и кристаллическая решётка.

В дальнейшем Гейм и его коллеги планируют проверить, формируется ли квадратный лёд в других аллотропных модификациях углерода, таких как углеродные нанотрубки. По словам учёных, их работа поможет в создании более совершенных опреснительных фильтров на основе графена.

О результатах своего исследования манчестерские исследователи сообщили в статье, опубликованной в журнале Nature.



Источник: Вести.Наука



Комментарии
статья G. Algara-Siller, O. Lehtinen, F.C. Wang, R. R. Nair, U. Kaiser, H. A. Wu, I. V. Grigorieva, A. K. Geim. Square ice in graphene nanocapillaries выложена на http://arxiv...s/1412.7498

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Наношарики
Наношарики

Премии Правительства Москвы молодым ученым за 2019 год
Объявлены лауреаты премии Правительства Москвы молодым ученым за 2019 год. Премией отмечены 50 работ молодых столичных ученых. Среди лауреатов 12 сотрудников МГУ имени М.В.Ломоносова. Конкурс на получение премий Правительства Москвы молодым ученым проводится с 2013 года. Торжественное награждение победителей состоится 7 февраля 2020 года в Государственном Кремлевском дворце.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Перерождение кремния: от полупроводника к металлу. Морская губка – основа для создания новых наноструктурных композитов. Нитрид-борные аналоги углеродных колец. Лучшие научные сюжеты года по версии APS. Сверхпроводимость ставит новый температурный рекорд. Звук переносит массу? Всяко-разно.

Наносистемы: физика, химия, математика (2019, том 10, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume10/10-6
Там же можно скачать номер журнала целиком.

Да пребудет с вами сила плазмонов!
А.А.Семенова, Э.Н.Никельшпарг, Е.А.Гудилин, Н.А.Браже
Ученые Московского университета приблизились к решению проблем современной медицинской диагностики с использованием единичных клеток и их органелл путем разработки новых неинвазивных оптических методов анализа.

Юрий Добровольский: «Через 50 лет вся энергия будет вырабатываться биоорганизмами»
Андрей Бабицкий, Юрий Добровольский
Главный редактор ПостНауки Андрей Бабицкий побеседовал с химиком Юрием Добровольским о науке о материалах, будущем энергетики и новых аккумуляторах

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.