Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Из коллекции фотографий польского фотографа-натуралиста Ирениуша Ирасса Вальджика (Ireneusz Irass Waldzik).

Может ли муха стать нанотехнологом?

Ключевые слова:  микроскопия, наноструктурированные поверхности, нанотехнологии, насекомые, оптика, периодика, свет

Автор(ы): Сергеев Антон

Опубликовал(а):  Палии Наталия Алексеевна

23 февраля 2015

Кажется, они были всегда... Сотни миллионов лет назад они наблюдали за появлением первых динозавров, а затем и за их гибелью. Они жили рядом с первыми млекопитающими и были свидетелями их расцвета. Сейчас они обитают везде — в воздухе, в воде и в почве, на улице и в наших домах. Они наблюдают за нами уже очень давно — с момента появления наших предков — так, может, пора узнать, что прячется за их внешней простотой? Пора приоткрыть завесу над тайной зрительного аппарата насекомых.

Блики на лице

Первые несколько веков становления энтомологии описание внешнего вида насекомых делали «на глаз». И если поначалу приходилось довольствоваться только остротой своего собственного зрения, то после изобретения микроскопа задача классификации значительно упростилась. Были детально описаны жилки на поверхности перепончатого крыла, разъяснено устройство фасеточного (сложного) глаза и его структурной единицы — омматидия (простого глаза) (рис. 1А—Д). С увеличением числа исследованных видов неизвестных структур становилось все меньше и меньше, и все свидетельствовало о том, что предела разрешения оптической микроскопии вполне достаточно для точного описания таких объектов.

После изобретения в 30-х годах ХХ века электронной микроскопии у ученых появилась возможность изучать гораздо более мелкие объекты. В 60-е годы был опубликован ряд статей, в которых впервые заговорили о том, что помимо микроструктуры (от сотен до тысяч фасеток на поверхности сложного глаза) насекомые обладают также наноструктурой — большим числом маленьких бугорков на поверхности роговичной линзы отдельного омматидия [1]. И если размер фасетки в среднем составлял около 20 мкм, то поперечный размер обнаруженных бугорков (nipples, англ. «сосочки») составил около 200 нм (рис. 1В—Г).

В те годы было исследовано большое количество видов — преимущественно бабочек и мотыльков — и определены различия в высоте наноструктур на поверхности роговичной линзы насекомых, которая может варьировать от 0 (полное отсутствие выраженной структуры) до четверти микрона (самые длинные). Ученые показали, что наличие наноструктур такого рода способствует лучшему поглощению света, а это позволяет насекомому лучше видеть. Безусловно, хорошее зрение важно практически для всех видов, но совершенно особую роль оно играет для ночных и летающих насекомых, для которых точная ориентация в пространстве жизненна необходима. Поэтому неудивительно, что глаза большей части бабочек и мотыльков «оборудованы» нанобугорками [2].

Рисунок 1. Устройство сложного глаза насекомых. А — голова насекомого; Б — изображение сложного глаза, полученное при помощи методов электронной микроскопии; В — роговичные линзы омматидиев (фасетки); Г — нанобугорки на поверхности омматидиев; Д — схематическое изображение поперечного разреза омматидия (простого глаза); Е—З — антибликовые структуры: Е — однослойное просветляющее покрытие с показателем преломления n2=const (n1>n2>n0); Ж — просветляющее покрытие с градиентом показателя преломления n2(x), изменяющимся от n0 до n1; З — наноструктурированная поверхность фасетки. Красными кругами выделены области, где волны интерферируют и гасят друг друга. Изображения В и Г были получены автором статьи на атомно-силовом микроскопе.

Что же делает глаза с нанобугорками более эффективными? Для того, чтобы ответить на этот вопрос, обратимся к одной важной задаче просветления оптики: задаче создания небликующей (хорошо поглощающей свет) поверхности [3]. Такие поверхности используются, например, в фото- и видеотехнике. Наиболее простое решение — нанести на линзу тонкую (обычно четверть длины волны) пленку с показателем преломления определенной величины n2 (рис. 1Е). В такой пленке волны, отраженные от верхнего и нижнего слоя, интерферируют друг с другом и взаимно гасятся. Это позволяет увеличить светопропускание оптической системы за счет уменьшения доли отраженного света, что важно, например, для получения более качественных снимков или удаления бликов с монитора.

При этом изготовление высококачественных просветляющих пленок не такая уж простая задача. Длины волн видимого света находятся в диапазоне от 400 до 750 нм, поэтому для достижения наилучшего эффекта требуются многослойные пленки. Наиболее выигрышный подход заключается в использовании неоднородной пленки, в которой показатель преломления n2(x) не постоянен, а изменяется по градиенту: от показателя преломления среды n0 в верхнем слое до показателя преломления линзы в нижнем слое n1 (Рис. 1Ж). Так можно добиться равномерного поглощения всех длин волн в оптическом диапазоне.

Насекомые справились с этой задачей по-своему — они хорошо видят, потому что смогли изменить геометрию поверхности своего глаза (Рис. 1З). При этом слой из нанобугорков, если его толщина меньше длины волны падающего света, ведет себя как пленка с изменяющимся показателем преломления. Все просто!

Так насекомые продемонстрировали человеку нанотехнологию, которую можно повсеместно применять во многих сферах человеческой деятельности. Самое привлекательное в ней то, что для создания аналогичных антибликовых покрытий не нужно подбирать материалы с какими-то исключительными свойствами. Главное повторить геометрию такой поверхности, а это можно сделать довольно точно, используя изученную структуру как шаблон. Наноструктурированные поверхности глаз насекомых уже сейчас могут быть использованы для изготовления ячеек солнечных батарей*, что сразу позволит увеличить поглощение солнечной энергии без активного поиска каких-либо новых материалов — требуется лишь задать нужные параметры производства.

* — Возможно, этот принцип совместим с получением электроэнергии на основе «биологических» солнечных элементов: «Биофотовольтаика. По-настоящему зелёная энергия» [4]. — Ред.

Про мутантов

С 2009 года начались детальные исследования наноструктур глаз насекомых в Пущинском научном центре РАН совместно с Университетом Лозанны (Швейцария). Среди первых работ, опубликованных данным коллективом, стало систематическое исследование глаз плодовой мушки Drosophila melanogaster [5]. Дрозофила является хорошо изученным модельным организмом — ее геном полностью секвенирован и описано большое число генетических мутаций. Идеальный объект для исследований!

При помощи методов атомно-силовой микроскопии* были определены и охарактеризованы поверхности омматидиев дикого типа Drosophila melanogaster. Здесь ученых ждало несколько неожиданных открытий! Так, многие годы считалось, что нанобугорки на поверхности омматидия имеют плотную гексагональную упаковку. Однако в ходе многочисленных исследований глаз дикого типа Drosophila melanogaster выяснилось, что глаза простой плодовой мушки, вопреки устоявшемуся в научном сообществе мнению, обладают необычной разупорядоченной наноструктурой (рис. 2В). При этом упаковка омматидиев остается гексагональной (Рис. 2А,Б). Таким образом, наноструктура мухи в некотором смысле случайна, в то время как макроструктура строго упорядочена.

* — Концепция и разновидности атомно-силовой микроскопии рассмотрены в превосходной статье «Атомно-силовая микроскопия: увидеть, прикоснувшись» [6]. — Ред.

Нанобугорки на поверхности фасетки дрозофилы обладают небольшими размерами — порядка 30 нм в высоту (по сравнению с чешуекрылыми, у которых высота может быть больше 200 нм). Расстояние между соседними нанобугорками не отличалось от среднего значения расстояний для других насекомых и составило примерно 200 нм. Как уже было сказано выше, такие размеры обеспечивают эффект просветляющего покрытия.

Разобравшись с особенностями структуры поверхности глаза простой плодовой мушки, исследователи провели анализ влияния хорошо описанных мутаций на морфологию поверхности глаза. Для этого были рассмотрены поверхности глаз двух мутантных линий Drosophila melanogaster с фенотипами Frizzled (от англ.«завитой, взъерошенный») и Glazed (от англ. «глянцевый»).

У мутантов с фенотипом Frizzled в целом нарушена плоскостная ориентация клеток (planar cell polarity), что приводит к неправильному развитию покровов насекомого. Плоскостная ориентация клеток «указывает» каждой клетке организма, как ей расти в зависимости от её расположения; нарушение данного процесса имеет глобальный отклик, вызывая необратимые изменения во всех тканях особи. Глаза такой мухи — печально зрелище! В отличие от здоровой особи, глаз мутанта с фенотипом Frizzledхарактеризуется как «рыхлый глаз» (это официальный термин!) с сильно нарушенной строгой гексагональной упаковкой омматидиев (рис. 2Г—Д). Атомно-силовая микроскопия помогла обнаружить последствия мутации и основную причину нарушения упаковки омматидиев — между фасетками оказались посторонние включения материала линзы, которых в норме там не должно быть.

Рисунок 2. Наноструктура глаз Drosophila melanogaster — дикий и мутантные типы. Сложный глаз Drosophila melanogaster у дикого типа (А) характеризуется строгой гексагональной упаковкой омматидиев, в то время как у мутанта Frizzled (Г) наблюдается фенотип «рыхлый глаз» с нарушением расположения омматидиев. Это подтверждается при анализе дифракционной картины и преобразования Фурье изображений глаз дикого типа (Б), где наличие шестиугольника говорит о гексагональной упаковке, и мутанта Frizzled (Д), для которого наблюдается размытое кольцо, указывающее на случайное распределение фасеток. Распределение бугорков в обоих случаях (В, Е) является случайным. Ж—З. Сравнение дикого типа Drosophila melanogaster (Ж) с мутантом Glazed (З) показывает, что данная мутация оказывает достаточно сильное влияние как на микро-, так и на наноструктуру глаза. Помимо нарушения упаковки самих омматидиев, нанобугорки также претерпевают значительные изменения и уменьшены в размерах. Как следствие, глаза плодовой мушки начинают давать больше бликов из-за нарушения антиотражательного слоя.

Мухи-мутанты с фенотипом Glazed интересны по другой причине: их глаза имеют меньший размер по сравнению с диким типом и значительно сильнее отражают свет (поверхность начинает больше «бликовать»). Проанализировав наноструктуру их глаз, ученые пришли к выводу, что усиление отражения света возникает из-за уменьшения высоты нанобугорков (Рис. 2Ж—З). Так было получено экспериментальное подтверждение влияния высоты наноструктуры на отражательную способность глаза у одного и того же насекомого. Кстати, здесь следует упомянуть, что антибликовая функция фасеточного покрытия насекомых может играть еще одну важную роль — снижение заметности. Как показывают расчеты, выигрыш в поглощении света, а значит и остроте зрения, обычно составляет всего несколько процентов, в то время как уменьшение блеска глаз может отличаться в несколько раз! Как следствие, насекомое становиться менее приметным, что явно способствует его выживаемости: хищники могут ближе подбираться к жертве, а жертвы — лучше прятаться.

При исследовании ещё нескольких мутантных линий плодовой мушки были определены ключевые белки, формирующие роговичную линзу омматидиев [7]. Генетические манипуляции с использованием РНК-интерференции позволили определить степень и характер влияния каждого из белков на строение простого глаза мухи и позволили сделать заключение о том, что посредством введения таких белков в систему можно направленно управлять структурой фасеток, создавая нужный фенотип. Так, например, введя мухе гомологичные белки пчелы, мы можем получить особь с «пчелиными» глазами. Что только с этим делать и как использовать на практике — пока не ясно...

Рисунок 3. Многообразие наноструктур глаз разных видов насекомых. А — глаза ночных бабочек обладают самыми высокими антибликовыми свойствами среди насекомых, что достигается за счет строгой упорядоченности нанобугорков и их большой высоты (200 нм). Б — Специфические наноструктуры на поверхности глаз ногохвостки необходимы для достижения гидрофобности — насекомое может не бояться того, что вода попадет ему в глаза. В—Е — наноструктуры глаз могут заметно различаться у разных видов насекомых, как, например, у мух (В, Д), клопов (Г) и мотыльков (Е). Какой эффект достигается за счет такой геометрии поверхности — ответить сложно. Ж — микроструктура сложного глаза бабочек. Несмотря на большое разнообразие наноструктур, микроструктура глаз обычно сходна для всех. Серьезные отличия удается найти не часто — нам повезло!

Наш ответ — биомиметика

Поскольку большую часть идей, касающихся структурированной поверхности, человек почерпнул из природы, следует признать — наблюдение за разнообразием окружающего мира может дать очень многое. Сформировалось даже целое научное направление — биомиметика, использующая идеи живой природы для решения насущных технологических задач. История науки знает немало примеров, когда непонятное на первый взгляд эволюционное приспособление оказывалось гениальным изобретением. Вернемся немного назад во времени и проследим за одним открытием.

В 70-е годы ХХ века ученым удалось объяснить механизм эффективного отталкивания воды листьями лотоса, который, как думали до этого, обеспечивается «воскоподобным» покрытием или идеально гладкой поверхностью. Листья этого растения невозможно смочить водой, и причина тому — не химические особенности покрытия листьев, а особая морфология поверхности. В дальнейшем такую несмачиваемость поверхности водой назвали супергидрофобностью [8, 9]. Механизм этого явления прост: листья лотоса покрыты большим количеством плотно посаженных бугорков, при попадании воды на которые капли могут касаться только верхушек нанобугорков, а стечь ниже им не позволяет сила натяжения жидкости. Водяные капли имеют слишком малую площадь соприкосновения с поверхностью и, долго не задерживаясь, стекают с поверхности при малейшем наклоне. Однако важно различать гидрофобный эффект вещества на молекулярном уровне (химический) и гидрофобный эффект, вызываемый специфической геометрией поверхности — это совершенно разные вещи (хотя они и могут использоваться совместно)!

Каковы же размеры этих гидрофобных бугорков? Недавние исследования показали, что в общем случае для обеспечения подобного механизма требуемые размеры структуры составляют от десятков (как у листа лотоса) до долей микрона [10]. Размеры нанобугорков глаз насекомых располагаются около нижней границы этих значений (рис. 3).

Немногим позднее был описан противоположный эффект, названный «эффектом лепестков розы» — он заключается в повышенной гидрофильности поверхности (вода к ней очень «любит» прилипать) [11]. И вновь гидрофильность обеспечивается именно геометрией, а не химическим составом! Самое интересное в этих двух качественно противоположных эффектах заключается в том, что для одного и того же вещества свойства поверхности можно с легкостью изменять от гидрофильных до гидрофобных. И все это за счет простых бугорков!

Насекомые значительно продвинулись в создании сложных структур. При этом все богатство функций, которые они демонстрируют, не ограничивается антибликовыми и гидрофобными свойствами: исследования в этом направлении также показали возможность антибактериальной функции крыльев цикад [12] и удивительного явления — структурной окраски бабочек (рис. 4) [1315]. Хочется верить, что исследования в этой области таят еще немало сюрпризов.

В завершение стоит сказать, что наноструктуры, которыми усердно пытается овладеть и человек, могут скрывать еще не описанные к настоящему моменту свойства. Возможно, описав их многообразие и изучив физические характеристики, мы сможем из любого подручного вещества создавать материалы с необходимыми нам качествами и управлять их поведением по нашему желанию. Природа таит в себе множество уникальных, элегантных и остроумных решений, возникших за миллиарды лет эволюции живого. Возникших и успешно используемых. Человеку стоит находить, удивляться, изучать и повторять обнаруженные нанотехнологии, используя весь арсенал доступных ему методов — генетические манипуляции, физические методы и математическое моделирование.

Рисунок 4. Нанотехнологии, которые можно позаимствовать у насекомых.

Литература

  1. Bernhard C.G., Miller W.H. (1962). A corneal nipple pattern in insect compound eyes. Acta Physiol. Scand.56, 385–386;
  2. Stavenga D.G., et al. (2006). Light on the moth-eye corneal nipple array of butterflies. Proc. Biol. Sci.273, 661–667;
  3. Wikipedia: Anti-reflective coating;
  4. биомолекула: «Биофотовольтаика. По-настоящему зелёная энергия»;
  5. Kryuchkov M., Katanaev V.L., Enin G.A., Sergeev A., Timchenko A.A., Serdyuk I.N. (2011). Analysis of Micro-and Nano-Structures of the Corneal Surface of Drosophila and Its Mutants by Atomic Force Microscopy and Optical Diffraction. PloS One6, e22237;
  6. биомолекула: «Атомно-силовая микроскопия: увидеть, прикоснувшись»;
  7. Енин Г.А., Катанаев В.Л., Крючков М.В., Озерова А.Н., Сергеев А.В., Тимченко А.А.: Поиск и изучение новых наноструктурных покрытий на поверхности глаз различных насекомых. // Тезисы Четвертой региональной конференции «Молодежные научно-инновационные проекты Московской области» (Жуковский-Пущино,22-23 ноября 2012 года), С. 44-45;
  8. Forbes P. (2008). Self-cleaning materials. Scientific American299, 88–95;
  9. биомолекула: «Физическая водобоязнь»;
  10. Hobæk T.C., et al. (2011). Surface Nanoengineering Inspired by Evolution. BioNanoScience1, 63–77;
  11. Wikipedia: Wetting — «Petal effect» vs. «lotus effect»;
  12. Ivanova E.P. et al. (2012). Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small8, 2489–2494;
  13. Элементы: «Структурная окраска»
  14. Vukusic P., Sambles J.R. (2003). Photonic structures in biology. Nature424, 852–855;
  15. GE Global Research: Nanostructures of Morpho butterfly wing scales demonstrate high resolution of temperature changes at high speed.


В статье использованы материалы: biomolecula.ru


Средний балл: 8.5 (голосов 2)

 


Комментарии
Палии Наталия Алексеевна, 23 февраля 2015 12:04 
Эта статья была представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Своя работа», и опубликована на сайте НАНОМЕТР в год празднования Международного Года света и световых технологий

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Диоксид земляники
Диоксид земляники

Успехи химии - самый цитируемый российский научный журнал
Успехи химии - самый цитируемый российский научный журнал по данным Journal Citation Reports за 2018 г., импакт - фактор 4.612, пятилетний 4.263, квартиль Q1.

Содержание 4 и 5 номеров Mendeleev Communication
Вышли 4 и 5 номер журнала Mendeleev Communication, ссылки на статьи в Scientific Direct даны на сайте журнала. Журнал публикует (и достаточно быстро) короткие сфокусированные сообщения по широкой тематике, в том числе, по материалам, наноматериалам, нанохимии в сотрудничестве с компанией Elsevier.

SCAMT Workshop Week, практикум по нанотехнологиям. СПб, 20-26 Января 2020: открыт прием заявок!
SCAMT Workshop Week (SWW) - уникальный междисциплинарный химико-биологический воркшоп: за 1 неделю у вас будет возможность сделать научный проект в одной из самых современных областей нанотехнологий и освоить новые практические навыки. SWW будет проходить с 20 по 26 января 2020, прием заявок открыт.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.