Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Суператомное ядро Ni2O2 и его необычные свойства

Ключевые слова:  ananikovlab, ESI-MS, ИОХ РАН, катализ, масс-спектрометрия, металлорганика, наноиндустрия, суператом

Опубликовал(а):  Попова Олеся Геннадьевна

17 февраля 2015

В результате исследования, проведенного в лаборатории член-корр. РАН В.П.Ананикова в Институте органической химии им. Н.Д.Зелинского РАН (Москва), выявили уникальный фрагмент молекулы - Ni2O2, состоящий из двух атомов никеля и двух атомов кислорода, который проявляет суператомные свойства. Предположительно, суператомы являются важными структурными элементами наноразмерной организации и проявляют уникальные физические и химические свойства.

Суператом (superatom) – это комбинация двух и более атомов, образующая устойчивый структурный фрагмент и обладающая уникальным набором физико-химических свойств. Системы, содержащие суператомы, открывают ряд новых возможностей как для создания новых материалов, так и для придания им уникальных свойств. Что касается процесса химических превращений, то в этом случае суператом участвует как одно целое и сохраняется по ходу реакции. С некоторой точки зрения, суператомы можно рассматривать как своеобразные элементы периодической системы в наноизмерении. Потенциальная область применения суператомов очень широка - целенаправленное изучение суператомных свойств активно ведется в катализе, науках о материалах, наноиндустрии и медицине.

Стилизованное изображение полета частицы Ni2(acac)3+ в камере масс-спектрометра.

Возможности современных компьютеров позволяют предсказать частицы, которые могут претендовать на звание «суператом» и даже описать некоторые их свойства. Как следствие того, что на сегодняшний день не существует универсального метода поиска и идентификации суператомов, на данный момент ведутся активные разработки специальных методик и подходов для их обнаружения. Процессу поиска способствует характерный состав суператомов – число атомов определенного типа, нередко упоминаемое как «магическое» и имеющее непосредственную зависимость от образующих элементов. Другая характерная особенность суператомов – высокая стабильность – помогает выделить их на фоне других молекул.

Рисунок 1. Исследование стабильности и распада различных соединений никеля в масс-спектрометре.

Для обнаружения суператомов ученые ИОХ РАН предложили использовать масс-спектрометрию. В ходе опыта исследуемый раствор подается в камеру ионизации масс-спектрометра через тонкий капилляр с помощью шприца. Затем этот раствор распыляется в виде спрея, и под действием высокого напряжения соединения ионизируются и далее превращаются в индивидуальные заряженные частицы (Рисунок 1). Этот процесс хорошо известен и носит название ионизации методом электрораспыления (ESI). Оказалось, что в таких условиях может наблюдаться образование частиц, содержащих суператомные ядра (superatomic core), которые идентифицируются при столкновении с молекулами азота во второй части прибора. За счет варьирования параметров столкновения можно оценить относительную стабильность и выделить наиболее стабильные ионы.

Рисунок 2. Фрагментация биметаллического иона в результате ESI-MS/MS эксперимента инициирует новые химические превращения с активацией C-C, C-H и C-O связей.

При масс-спектрометрическом изучении ацетонитрильного раствора хорошо-известной соли ацетилацетоната никеля, Ni(acac)2, было отмечено неожиданное свойство. После подробного анализа полученных спектров, авторы работы обнаружили необычайно устойчивый ион состава Ni2(acac)3+, содержащий ядро Ni2O2. В процессе бомбардировки всех наблюдаемых ионов молекулами азота (ESI-MS/MS эксперимент), удалось установить ряд относительной стабильности, исходя из количества атомов никеля, входящих в состав иона: Ni2 >> Ni3 ≈ Ni1. В результате серии экспериментов была прослежена тенденция значительно большей устойчивости биметаллического комплекса по сравнению с моно- и триметаллическим.

Интереснейшие химические процессы обнаружились при дальнейшем изучении комплекса с ядром Ni2O2, содержащем два атома никеля и три ацетилацетонатных лиганда. Реакционная способность при соударении с азотом оказалась весьма необычной (Рисунок 2): в результате фрагментации образовались новые ионы, но ядро Ni2O2 осталось неизменным. Важнейшей находкой являются реакции, протекающие в результате активации C-C, C-H и C-O связей, – ключевые процессы с точки зрения органической химии и катализа.

Одной из приоритетных задач современного катализа является модификация органических фрагментов (лигандов), не затрагивающая активный центр катализатора. В изученных соединениях это не так просто сделать, поскольку связи углерод-углерод, углерод-кислород и углерод-водород обычно являются более прочными, и разорвать их намного сложнее, чем слабые донорно-акцепторные связи металл-кислород в комплексных соединениях.

Наличие суператомного ядра может полностью изменить сложившееся представление о металлоорганических соединениях и о том, как мы можем их применять в дальнейших исследованиях. Эта находка позволит ученым открыть новые свойства хорошо известных соединений и использовать их для решения задач, которые раньше казались невозможными.

Результаты этих исследований очень важны для понимания фундаментальных основ строения и свойств комплексов металлов и могут способствовать разработке новых каталитических систем для тонкого органического синтеза. По словам профессора В.Ананикова: “Комплексы никеля очень дешевы и легкодоступны. На удивление, некоторые никелевые комплексы демонстрируют выдающуюся активность в катализе, которая заметно превосходит хорошо зарекомендовавшие себя, но намного более дорогие катализаторы на основе благородных металлов. В ближайшее время мы ожидаем все большего и большего применения комплексов никеля в катализе”.

Первая часть исследования описана в статье: "Exceptional Behavior of Ni2O2 Species Revealed by ESI-MS and MS/ MS Studies in Solution. Application of Superatomic Core To Facilitate New Chemical Transformations", Dmitry B. Eremin, Valentin P. Ananikov, опубликованой в журнале Organometallics американского химического общества.

Сcылка: Organometallics, DOI: 10.1021/om500637k

Он-лайн ссылка: http://pubs.acs.org/doi/abs/10.1021/om500637k

Размещено по материалам пресс-релиза.





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Золотые наносферы
Золотые наносферы

Наноград. Люди (фоторепортаж)
С 29 июня по 11 июля 2018 года во Владивостоке, на базе Дальневосточного федерального университета (Владивосток) прошел Всероссийский детско-молодежный форум «Наноград - 2018». Вот об этом - небольшой фоторепортаж о людях и пространствах Нанограда.

Наноград. ДВФУ (фоторепортаж)
С 29 июня по 11 июля 2018 года во Владивостоке, на базе Дальневосточного федерального университета (Владивосток) прошел Всероссийский детско-молодежный форум «Наноград - 2018». Ниже - небольшой фоторепортаж о самом ДВФУ, который принял Нагорад.

Наноград. Владивосток (фоторепортаж)
С 29 июня по 11 июля 2018 года во Владивостоке, на базе Дальневосточного федерального университета (Владивосток) прошел Всероссийский детско-молодежный форум «Наноград - 2018». Более того, он проходил в кампусе ДВФУ на острове Русский - в том самой географической точке, где уже не первый год наша страна проводит масштабный экономический форум. Ниже - небольшой фоторепортаж об этом особом, удивительном месте.

Наноматериалы в ядерных технологиях
Тананаев И.Г.
Сегодня активное развитие ядерных технологий – мировая тенденция, связанная с обеспечением устойчивого развития мирового сообщества. Решение энергетических проблем путем строительства новых атомных станций, формирование персонифицированной высокотехнологической медицины за счет внедрения ядерной медицины, освоение Арктики и космического пространства – основы ядерных технологий, не говоря об обеспечении государственной безопасности и удержания паритета ядерных вооружений.

Пероксидные соединения и наноматериалы
Приходченко П.В.
На Нанограде П.В.Приходченко (ИОНХ РАН им. Н.С.Курнакова) была прочитана отличная и совершенно уникальная лекция о химии пероксидных соединений и их использовании для получения новых наноматериалов для электрохимической энергетики.

Нанотехнологии молодости
Гудилин Е.А.
Во время актовой лекции Нанограда Е.А.Гудилин рассказал о важных направлениях развития нанохимии, функционального материаловедения и создании новых материалов молодежными группами ФНМ МГУ.

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!

Проектная работа

Сегодня становится все более популярной так называемая проектная работа школьников, однако на этот счет есть очень разные мнения. Мы были бы признательны, если бы Вы высказали кратко свое мнение по этому поводу путем голосования. Заранее благодарны!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.