Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Схема, иллюстрирующая создания транзистора из силицена
Возможно, в будущем, именно из силицена будут изготавливаться транзисторы
Микрофотография пласта силицена, полученная с помощью СЭМ

Сверхбыстрый силиценовый транзистор продемонстрировал себя в действии

Ключевые слова:  Графен, Силицен, Транзистор

Опубликовал(а):  Доронин Федор Александрович

09 февраля 2015

Двухмерных материалов физики создали уже немало, однако мало кто из этих пластов толщиной в один атом также широко известен как "чудо-материал" графен. Соты из углерода могут стать основой высокотехнологичных пуленепробиваемых покрытий будущего.

В 2010 году материаловеды получили аналог графена силицен. Этот материал представляет собой структурный аналог графена, только вместо углеродных сот у него соты из атомов кремния. Толщина материала также равна всего одному атому.

Силицен обладает выдающимися электрическими свойствами, однако это также означает, что работать с ним крайне непросто. В 2015 году учёные нашли способ конструировать из силицена транзисторы.

Ведущий автор нового исследования Деджи Акинванд (Deji Akinwande), компьютерный инженер из Техасского университета в Остине, разработал новую методику работы с силиценом, чтобы иметь возможность изготовить из него настоящий транзистор. В своей статье, опубликованной в журнале Nature Nanotechnology, автор отмечает, что силиценовые транзисторы способны переключаться с рекордной скоростью.

"Преимущество силицена перед тем же графеном в моей сфере исследований заключается в том, что инженеры и так привыкли использовать кремний и работать с ним. Если мы докажем его работоспособность, то силиценовые транзисторы сразу же смогут быть внедрены в полупроводниковую промышленность", — поясняет Акинванд.

Поясним, что дело тут не только в привычке. Транзисторы на основе кремния могут быть быстрее внедрены в производство по той простой причине, что переход от кремния к силицену технически будет осуществить гораздо проще.

Теоретические расчёты, произведённые за несколько лет до данного исследования, показали, что электрические свойства силицена должны не уступать свойствам самого графена. То есть электроны, путешествующие сквозь графеновую или силиценовую схему в любом направлении, должны почти не встречать на своём пути никаких препятствий. Отсутствие сопротивления обеспечит сверхбыструю работу электронных схем, предположили учёные.

Однако, в отличие от графена, силицен не встречается в природе. Для его получения химики выращивают материал в лаборатории на листе серебра. Углерод к тому же более стабилен в двухмерном пласте, тогда как атомы кремния деформируют структуру. На сегодняшний день лишь немногим материаловедам удалось получить силицен в лаборатории (в 2010-м и 2012-м годах).

Но даже получение материала ещё не означает, что его можно использовать по своему усмотрению. Нестабильность силицена заставляет делать для него защитное покрытие.

Акинванд и его коллеги вырастили силицен на тонкой плёнке из серебра и покрыли его оксидом алюминия. После получения этого "бутерброда", всю конструкцию перевернули и поместили на пластину из диоксида кремния (серебряной стороной вверх).

Затем серебряный слой обработали таким образом, чтобы сделать из него электрические контакты для силиценового транзистора. После завершения работы над устройством исследователи заключили, что оно может стабильно работать в условиях вакуума.

На данный момент изготовления силицена и конструирование из него транзисторов по методу Акинванда нецелесообразно. Технология получения материала является сложной и дорогостоящей, и потому её нельзя назвать коммерчески выгодной.

Однако эта работа демонстрирует возможности полевого транзистора на основе силицена, работающего при комнатной температуре. В статье журнала Nature Nanotechnology учёные описывают измеренные свойства полученного устройства.

Силицен, скорее всего, не заменит обычный кремний в компьютерных транзисторах в будущем, но он точно добавит функциональности чипам на его основе, делают вывод эксперты.


Источник: Вести.Наука




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Продолжая цветочную тему
Продолжая цветочную тему

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ» (Интересные научные события 2020 года от Американского физического общества (APS): Новый век сверхпроводимости. Магические углы в графене. Новые рекорды LIGO и Virgo: сверхмассивные и асимметричные слияния черных дыр. Свет от темной материи в эксперименте Xenon. Чего не хватает для создания квантового интернета? Коперниканский переворот в нейронных сетях. Червякомешалка. Вселенский метроном и предел точности атомных часов. Благородные металлы и графен против токсичных газов. Мультиферроик с ферродолинным упорядочением. Борные сенсоры азотосодержащих загрязнителей.

Наносистемы: физика, химия, математика (2020, Т. 11, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume11/11-6
Там же можно скачать номер журнала целиком.

С Новым годом!
Дорогие друзья и коллеги!
Поздравляем с наступающим 2021 годом!
Желаем всем хорошего настроения и здоровья, удачи во всем и новых достижений!

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.