Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Супергидрофобный металл без химического покрытия

Ключевые слова:  Гидрофобность, Краевой угол смачивания, Лазерные пучки, Металлы, Новая методика

Опубликовал(а):  Доронин Федор Александрович

24 января 2015

С помощью очень мощных лазерных пучков физики из университета Рочестера создали микро- и наноструктуры на поверхности металлов. В результате они стали чёрными и заполучили способность отталкивать воду и загрязнения. Учёные сообщают, что такая структура защитит поверхность от обледенения и ржавчины, а разработка в будущем приведёт к созданию водоотталкивающей электроники.

На настоящий момент уже существуют различные сверхгидрофобные покрытия, которые способны быстро и эффективно отражать воду и другие жидкости, что позволяет защищать материал от коррозии. Однако проблема в том, что многие из них имеют такие свойства благодаря химическим веществам на поверхности, слой которых со временем истончается и становится бесполезным.

Профессор Чуньлэй Го (Chunlei Guo) и его коллеги из университета Рочестера создали ещё один способ изменения металлов, при котором они сами становятся супергидрофобными. Исследователи добились этого благодаря фемтосекундному лазеру, который испускает очень мощные импульсы в течение короткого времени. Импульсы фактически гравируют микро- и наноразмерные структуры на поверхности металла и изменяют таким образом её свойства.

Используя мощные 65-фемтосекундные лазерные импульсы (частота до одной тысячи в секунду), учёные смогли изменить структуру поверхности образцов из платины, титана и латуни. На создание такого рода покрытия из множества параллельных микроскопических канавок специалистов вдохновили листья лотоса, по которым легко скатываются капли воды, частицы грязи и даже паразиты.

Результатом научной работы стал необыкновенный материал, который не просто крайне эффективно отталкивает воду (наклон поверхности на 4 градуса обеспечивает отскок капель сразу же, причём при столкновении с поверхностью 30% кинетической энергии капель сохраняется), но также является поглощающим свет (так как приобретает чёрный цвет) и самоочищающимся. Такая поверхность более скользкая, чем тефлон (для того чтобы с тефлонового покрытия соскользнули капли воды, требуется наклон в 70 градусов).

"Материал настолько водоотталкивающий, что вода попросту скатывается с поверхности, и этот процесс занимает менее секунды", – рассказывает Го.

Для того чтобы протестировать способность к самоочищению своей структуры, команда Го собрала обычные частицы пыли с помощью пылесоса и распылила их на поверхность обработанных металлов. По словам учёных, три капли воды оказалось достаточно, чтобы удалить около половины пыли, а ещё десятка капель – чтобы оставить поверхность идеально чистой. В реальности материалы могли бы быть очищены благодаря каплям дождя, росы или тумана.

сследователи считают, что их технологическое решение может пригодиться в развивающихся странах, например, для сбора дождевой воды или создания туалетов, которые остаются чистыми без продувки (это может предотвратить распространение болезней).

Светопоглощающие и водоотталкивающие свойства могут пригодиться при создании солнечных батарей, которые не нуждаются в очистке.
Научная статья группы Го была опубликована в издании Journal of Applied Physics. Данная научная работа была выполнена при поддержке Фонда Билла и Мелинды Гейтс (Bill and Melinda Gates Foundation).

В настоящее время группа Го изучает, как данная технология может быть использована в случае неметаллических материалов. Они в конечном счёте могут привести к созданию водоотталкивающей электроники.

Однако эта технология станет массовой, только если исследователи из США найдут способ упростить производство. Ведь сейчас для получения 6,5 квадратных сантиметров образца с выдающимися свойствами требуется около часа работы.


Источник: Вести.Наука



Комментарии
Палии Наталия Алексеевна, 25 января 2015 14:02 
статья Multifunctional surfaces produced by femtosecond laser pulses
авторов A. Y. Vorobyev and Chunlei Guo в свободном доступе , первый автор - ВОРОБЬЕВ АЛЕКСЕЙ ЮРЬЕВИЧ работал в Объединённый институт высоких температур РАН (Москва)
Очень не хотелось бы, чтобы читатели Нанометра были введены в заблуждение данной статьей. К сожалению, проф. Гуо не вполне понимает механизм обнаруженного им явления.
Действительно, фемтосекундная лазерная обработка, (как, кстати, и наносекундная) может создавать на поверхности металлов многомодальную шероховатость или, другими словами, иерархическую текстуру, как одно из обязательных условий достижения супергидрофобного состояния. Однако, если такая обработка проводится в чистых от органических загрязнений условиях, получающаяся поверхность будет не супергидрофобной, а супергидрофильной. Тот факт, что получающаяся у авторов обсуждаемой публикации поверхность была супергидрофобной, является следствием того, что получающаяся в результате лазерной обработки нанотекстурированная поверхность характеризуется повышенной адсорбционной способностью по отношению к органическим загрязнениям окружающей среды. Самопроизвольная адсорбция такой органики приводит к снижению поверхностной энергии металла, "заменяя" этап химической модификации. Однако, при такой адсорбции функциональные(водоотталкивающие) свойства поверхности оказываются нестойкими, особенно при длительном контакте с водой или влажной атмосферой. Поэтому только лазерная обработка поверхности, без химической модификации, не позволяет создавать действительно супергидрофобные поверхности, пригодные для практического использования. Вопрос о возможности получения супергидрофобных поверхностей без этапа гидрофобизации, за счет атмосферных загрязнений, неоднократно обсуждался в литературе (см. например, http://pubs..../la204429z, http://pubs..../am4051603, http://dx.do...38/nmat3709). Хотелось бы также отметить, что лазерным текстурированием, в том числе и для получения супергидрофобных поверхностей, в России также активно и успешно занимаются.
Владимир Владимирович, 01 февраля 2015 18:48 
Полностью согласен с Вашимм комментарием, Людмила Борисовна.
Можно только добавить, что структурную реорганизацию "шероховатых" поверхностей, полученных высокоэнергетическими воздействиями, также стоит принимать во внимание. Особенно при "эксплуатации".

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Следы на песке
Следы на песке

Премии Правительства Москвы молодым ученым за 2019 год
Объявлены лауреаты премии Правительства Москвы молодым ученым за 2019 год. Премией отмечены 50 работ молодых столичных ученых. Среди лауреатов 12 сотрудников МГУ имени М.В.Ломоносова. Конкурс на получение премий Правительства Москвы молодым ученым проводится с 2013 года. Торжественное награждение победителей состоится 7 февраля 2020 года в Государственном Кремлевском дворце.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Перерождение кремния: от полупроводника к металлу. Морская губка – основа для создания новых наноструктурных композитов. Нитрид-борные аналоги углеродных колец. Лучшие научные сюжеты года по версии APS. Сверхпроводимость ставит новый температурный рекорд. Звук переносит массу? Всяко-разно.

Наносистемы: физика, химия, математика (2019, том 10, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume10/10-6
Там же можно скачать номер журнала целиком.

Да пребудет с вами сила плазмонов!
А.А.Семенова, Э.Н.Никельшпарг, Е.А.Гудилин, Н.А.Браже
Ученые Московского университета приблизились к решению проблем современной медицинской диагностики с использованием единичных клеток и их органелл путем разработки новых неинвазивных оптических методов анализа.

Юрий Добровольский: «Через 50 лет вся энергия будет вырабатываться биоорганизмами»
Андрей Бабицкий, Юрий Добровольский
Главный редактор ПостНауки Андрей Бабицкий побеседовал с химиком Юрием Добровольским о науке о материалах, будущем энергетики и новых аккумуляторах

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.