Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Графеновые «занавески» и муаровый эффект - метастабильные домены в углеродных материалах

Ключевые слова:  графен, графит, катализатор, микроскопия, муаровый эффект, наночастицы, углеродные наноматериалы

Опубликовал(а):  Попова Олеся Геннадьевна

13 декабря 2014

Графен - ультратонкая пленка толщиной всего в 1 атом сочетает в себе целый ряд уникальных свойств. Графеновые слои, накладываясь друг на друга, формируют графит, который находит применение в самых различных областях, от изготовления карандашных грифелей до использования в качестве замедлителя нейтронов в ядерных реакторах, получения искусственных алмазов, изготовления термостойких смазок, адсорбентов и множества других приложений.

В последние годы по всему миру проводятся детальные исследования графена и графита на молекулярном уровне. Учёные испытывают особый интерес к структурированию (трехмерной пространственной организации) этих углеродных материалов. Графит на молекулярном уровне состоит из множества доменов с регулярными (идеальными) структурами, которые, срастаясь, формируют границы доменов. По некоторым предположениям, наиболее интересные физические и химические явления и процессы происходят именно вблизи границ доменов.

По результатам работ, проведённых в лаборатории член.-корр. РАН В.П. Ананикова в Институте органической химии им. Н.Д. Зелинского РАН, было высказано предположение, что границы доменов графеновых слоёв модулируют химические взаимодействия на поверхности углеродных материалов. Такое явление раскрывает интересные перспективы использования наноразмерных эффектов углеродных материалов в органической химии и катализе.

Рисунок 1. Появление разнонаправленных чередующихся тёмных и светлых полос обусловлено морфологией образца и его доменной структурой (образец графита с нанесёнными наночастицами Pd; STEM исследование).

Явления, происходящие на границах углеродных доменов, весьма сложно изучать, поскольку нет однозначного способа для быстрого определения топологии домена. Напрямую «увидеть» домены и их границы при помощи обычной техники - весьма проблематичная задача. Для обнаружения границ домена в углеродном материале авторы обратили внимание на муаровый эффект. Муаровый эффект, наверняка, наблюдал каждый из нас - например, когда части тюлевых занавесок, накладываясь друг на друга, образуют новый узор. Визуально, муаровый узор представляет собой чередование темных и светлых полос, и именно такие проявления наблюдаются при изучении образцов исследуемых углеродных материалов с помощью электронной микроскопии (рис. 1).

Другим методом визуализации доменных структур было нанесение наночастиц палладия на поверхность образцов. Предположительно, наночастицы должны оседать на поверхности не хаотично, а по границам доменов, поскольку электронная плотность внутренней части домена заметно отличается от электронной плотности на его границах. В ходе исследования при помощи сканирующего электронного микроскопа (SEM) были получены изображения, на которых видно, что частицы палладия действительно выстраиваются вдоль границ доменов. Сканирующая просвечивающая электронная микроскопия (STEM), которая позволяет проникнуть внутрь материала и исследовать его подповерхностные области, подтвердила это наблюдение и показала наличие дополнительных цепочек из наночастиц. Сопоставление границ доменов, отображённых при помощи муарового эффекта и при помощи нанесения наночастиц, показало интересную картину (рис. 2; рис. 1).

Рисунок 2. Нанесение наночастиц Pd на углеродный материал (образец графита с нанесёнными наночастицами Pd; STEM и SEM исследование одного участка поверхности).

В данный момент в точности неизвестно, по какому принципу выстраиваются обнаруженные при помощи микроскопии частицы. Однако, полученные результаты свидетельствуют, что частицы, находящиеся на поверхности, обладают способностью «чувствовать» изменения электронной плотности внутри графита. Авторы высказали предположение о существовании более сложных трехмерных углеродных структур, которые и модулируют такие взаимодействия.

Системы с наночастицами металлов, нанесёнными на поверхность углеродных материалов, являются широко известными катализаторами для разных областей химической промышленности, получения лекарственных препаратов, нефтепереработки и создания новых материалов. Понимание влияния углеродной матрицы имеет ключевое значение для развития промышленности и создания новых катализаторов.

Статья «Modulation of chemical interactions across graphene layers and metastable domains in carbon materials» Evgeniy O. Pentsak, and Valentine P. Ananikov опубликована в журнале Mendeleev Communications.

Библиографическая ссылка: Mendeleev Commun., 2014, 4, 327 - 328.

DOI: 10.1016/j.mencom.2014.11.002.

Он-лайн ссылка: http://dx.doi.org/10.1016/j.mencom.2014.11.002

Размещено по материалам пресс-релиза.



Другие статьи по теме:





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Проекты эмблемы Интернет-олимпиады
Проекты эмблемы Интернет-олимпиады

Опубликован механизм знаменитой реакции Зелинского. Получение бензола из ацетилена с помощью автокаталитического каскада на углеродных наночастицах
Российские исследователи показали, что карбеновые центры на зигзагообразных краях графеновых структур могут представлять собой альтернативную платформу для создания эффективных каталитических систем. В частности впервые был представлен механизм реакции Зелинского: тримеризации ацетилена с образованием такого важного продукта как бензол.

Подводятся итоги творческого конкурса «ЮниКвант»
На конкурс «ЮниКвант» для участия в профильной смене по био- и нанотехнологиям в ВДЦ «Океан» поступило более 100 заявок.

Круги на нано-полях
Тысяча SEM-микрофотографий иллюстрируют эффект упорядочивания наночастиц палладия на углеродной подложке. В журнале Scientific Data опубликована новая статья Ananikovlab.ru, в которой визуализируется и обсуждается этот уникальный эффект упорядочения.

2019-nCoV: очередной коронованный убийца?
Анна Петренко
В статье рассказывается о коронавирусе 2019-nCoV — что мы знаем сегодня. А ведущие международные научные издательства предоставляют бесплатный доступ к новым статьям, посвященных изучению коронавируса

Дышать свободно: как воздухоочистители борются с вирусами
Ростех
В перечне помощников в борьбе с вирусом COVID-2019 – также воздухоочистители. Речь идет о системах очистки воздуха, которые работают на основе фотокатализа. Их фильтры способны справиться с 99% бактерий и вирусов, в том числе могут стать действенным способом борьбы со злополучным COVID-2019.

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2020 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.