Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Постнаука. FAQ. Обнаружен полимерный раствор, затвердевающий при нагревании

Ключевые слова:  Затвердевание, Нагревание, Периодика, Полимеры, Постнаука

Автор(ы):  Постнаука

01 декабря 2014

19 октября 2014 года на сайте журнала Nature Materials была опубликована статья с описанием экспериментов с полимер-коллоидной смесью, у которой наблюдалось вторичное затвердевание при увеличении температуры. Мы попросили прокомментировать это исследование специалиста по полимерам, доктора физико-математических наук Игоря Потемкина.

Для создания «умных», программируемых систем, способных изменять свои свойства при изменении внешних условий, зачастую необходимо умение контролировать структуру на наноуровне, которая и определяет макроскопические свойства системы. Один из примеров таких систем был продемонстрирован в недавней статье в Nature Materials. Работа заключается в изучении взаимодействия коллоидных частиц с полимерными молекулами в растворителе, где впервые показывается, что с увеличением температуры притяжение между коллоидными частицами трансформируется в отталкивание (происходит растворение коллоидного кристалла), а при дальнейшем ее увеличении возможен обратный процесс — агрегация частиц в сетку. Причем физические причины каждый раз разные.

Первая часть работы посвящена тому, что демонстрируется образование коллоидного кристалла за счет притяжения коллоидных частиц при низких температурах, вызванное так называемой depletion force. Depletion — в переводе с английского «обедненный». При низких температурах между полимерными цепями и частицами превалируют силы отталкивания, поэтому вокруг каждой частицы формируется слой, который недоступен для цепей (обедненный слой). Если коллоидные частицы диспергированы в растворе, то суммарный объем таких слоев достаточно велик, и полимеру остается существенно меньше пространства в системе, и, следовательно, понижается его энтропия. Однако, если частицы слипнутся и образуется кристаллическая структура (как, например, у бильярдных шаров), большинство из обедненных слоев перекроются (исчезнут), а значит, полимерные цепи увеличат свою энтропию. Поэтому depletion force, имеющая энтропийную природу, ответственна за притяжение коллоидных частиц и стабильность их кристаллической структуры при низких температурах.

Что происходит дальше? Дальше в этой работе повышают температуру системы. Сначала наблюдается разрушение или растворение этого кристалла, то есть между коллоидными частицами начинают превалировать силы отталкивания, а потом, при дальнейшем увеличении температуры, коллоидные частицы снова начинают притягиваться, и формируется некая сетчатая структура. Причиной образования сетчатой структуры является уже притяжение полимера к коллоидным частицам, потому что он становится плохорастворимым при высокой температуре и начинает формировать мостики между коллоидными частицами, которые связывают их в сетку. Естественный вопрос, который может возникнуть: а почему частицы снова не формируют кристаллическую структуру? Ответ на него заключается в более слабом притяжении частиц по сравнению со случаем низких температур. Даже если бы притяжение было достаточно сильным, сам полимер выступал бы в роли дефекта, поскольку он обязан находиться между частицами, связывая их, и тем самым не способствовал бы образованию кристаллической структуры, в отличие от низких температур, когда коллоидные частицы слипаются друг с другом без какого-либо посредника.

Получается, что при низких температурах превалируют силы отталкивания между полимером и частицами, при высоких, когда формируются мостики, — силы притяжения. Соответственно, при промежуточных температурах силы отталкивания и притяжения скомпенсированы, и полимер слабо влияет на взаимодействие между частицами, которые остаются диспергированными в растворе, то есть они не притягиваются друг к другу. Таким образом, основной месседж статьи — это возможность обратимым образом контролировать три состояния системы.

Данная группа полимеров перспективна для использования в разнообразных приложений, в частности, при производстве высокотемпературных загустителей.

Источник: Постнаука


 

 


Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Акватория
Акватория

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ» (Интересные научные события 2020 года от Американского физического общества (APS): Новый век сверхпроводимости. Магические углы в графене. Новые рекорды LIGO и Virgo: сверхмассивные и асимметричные слияния черных дыр. Свет от темной материи в эксперименте Xenon. Чего не хватает для создания квантового интернета? Коперниканский переворот в нейронных сетях. Червякомешалка. Вселенский метроном и предел точности атомных часов. Благородные металлы и графен против токсичных газов. Мультиферроик с ферродолинным упорядочением. Борные сенсоры азотосодержащих загрязнителей.

Наносистемы: физика, химия, математика (2020, Т. 11, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume11/11-6
Там же можно скачать номер журнала целиком.

С Новым годом!
Дорогие друзья и коллеги!
Поздравляем с наступающим 2021 годом!
Желаем всем хорошего настроения и здоровья, удачи во всем и новых достижений!

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.