Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Постнаука. Где рождается наукоемкий бизнес. Выпуск 13

Ключевые слова:  Наукоемкий бизнес, Органические светодиоды, периодика, Постнаука, Светоизлучающие полевые транзисторы, Эффективность

Автор(ы): Постнаука

Опубликовал(а):  Доронин Федор Александрович

29 ноября 2014

В рамках проекта «Где рождается наукоемкий бизнес?» эксперты ПостНауки рассказывают о перспективных исследовательских задачах, решение которых не только произведет научный и технологический прорыв, но и будет иметь заметный экономический эффект. Доктор физико-математических наук Дмитрий Паращук рассказывает о преимуществах органических светодиодов, областях применения светоизлучающих полевых транзисторов и задачах повышения эффективности этих устройств.

Источники освещения на органических пленках, органических светодиодах интересны прежде всего очень широким диапазоном цветовых оттенков. Можно легко управлять цветом или длиной волны излучения, немного модифицируя материал. Каждый материал здесь может иметь свой цвет.

Помимо этого, они должны быть эффективными и долговечными. Именно это на данный момент является основной задачей для исследователей и разработчиков. Потому что органика не очень стойкая по сравнению с неорганикой, она может разлагаться, окисляться. С одной стороны, это перспективно, потому что люди производят много отходов, которые сложно утилизировать и перерабатывать, а органическая электроника может быть дружественна окружающей среде, так как способна сравнительно быстро разлагаться. Но по этой же причине она часто недолговечна. Узкое место органических источников освещения — недостаточные эффективность и срок службы. Основная проблема в материалах. Органическая пленка должна светиться десятки тысяч часов и светиться не хуже, чем, например, лампочка.

Впервые органический излучающий светодиод (organic light emitting diode, OLED) был создан около 20 лет назад компанией Kodak в США. Это устройство состояло из двух электродов, между которыми были расположены органические слои. На это устройство подается напряжение, и оно начинает светиться.

В неорганической электронике самые лучшие характеристики имеют материалы с совершенной структурой, то есть кристаллы. Это правило действует и в органической электронике. Органические кристаллы могут быть хорошими полупроводниками. И новые перспективные объекты здесь — это светоизлучающие полевые транзисторы. Это такие устройства, которые в себе объединяют функции светодиода и транзистора. Органические светодиоды уже используют многие производители смартфонов в дисплеях на OLED. Каждый пиксель здесь — это маленький светодиод, которому помогают транзисторы на кремнии. В органической электронике можно сделать устройство, которое объединяет в себе функции управления и излучения, — это будет как раз органический светоизлучающий транзистор.

Органические источники освещения могут иметь очень хорошие энергосберегающие характеристики, не хуже, чем у неорганических светодиодов, за разработку которых в этом году была вручена Нобелевская премия по физике.

Неорганические светодиоды — это всегда точечные источники света. А органическая пленка может быть распределенным источником освещения. И такие светильники уже есть. Это светильники в виде тонких пленок, которые в перспективе можно будет наклеить на стену как обои. Это формирует совершенно другой подход к световым и дизайнерским решениям. Новые осветительные приборы будут протяженными, тонкими, гибкими, полупрозрачными. Пока такие светильники достаточно дорогие и имеют небольшой сегмент рынка. Но очевидно, что он будет расти.

Если измерить спектр светодиодных ламп, то мы увидим, что он существенно отличается от естественного солнечного спектра, наиболее комфортного для человека. Органические светоизлучатели будет гораздо легче подстраивать под необходимый спектр. Пока мощность органических источников света невелика, и сегодня органические светодиоды находят применение там, где не нужно много света и не требуется высокая интенсивность. Например, в подсветках, дизайнерском освещении, освещении в салоне автомобиля или даже самолета.

Еще одно применение, уникальное для органической электроники, где неорганическая электроника ничего не может предложить, — это органические микродисплеи. Обычные жидкокристаллические дисплеи, которые нас окружают, имеют ограничения по яркости. Под каждым монитором есть осветители, и каждый пиксель — это пара поляризаторов, которые то открываются, то закрываются. Это означает, что диапазон яркости не может быть очень широким. Здесь есть источник света, который можно затемнять, но невозможно получить абсолютно темный экран. А в органической электронике возможно, поскольку точка — это светоизлучающий светодиод с огромным диапазоном яркости. Это находит уникальное применение в микродисплеях, которые размещаются перед глазом. Они необходимы прежде всего пожарным, летчикам, которые находятся в сложной световой обстановке с высокой интенсивностью света — от огня или солнца. При этом они должны видеть изображение с микродисплея. В этой сфере конкурентов у органических микродисплеев нет. Такая технология может найти применение и в развлекательной индустрии, когда можно будет смотреть видео в очках с такими микродисплеями с максимально приближенной к реальности глубиной цветопередачи и динамического диапазона.


В статье использованы материалы: Постнаука




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Космический корабль
Космический корабль

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.