Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Результаты покадровой съемки двух бактерий Escherichia coli и их потомков, образовавшихся после клеточного деления. Эти данные позволяют оценить колебания скорости роста бактериальных клеток в реальном времени. По горизонтальной оси — время в часах. Розовыми линиями программа анализа изображений автоматически обозначила границы клеток. Длина масштабного отрезка 5 мкм. Рисунок из обсуждаемой статьи в Nature
Рис. 2. Хаотические колебания мгновенной скорости роста клеток (μ, вверху) и концентрации ферментов катаболизма лактозы (E, внизу). По горизонтальной оси — время в часах. Каждая линия соответствует одной бактерии и ее потомкам: начинают следить за отдельной клеткой, после деления продолжают следить за одним из ее потомков (случайно выбранным), и т. д. Для наглядности четыре произвольно выбранные линии на каждом графике выделены разными цветами. Моменты клеточных делений обозначены светлыми кружками. Длина масштабного отрезка соответствует типичному интервалу между клеточными делениями (около полутора часов). Изображение из обсуждаемой статьи в Nature
Рис. 3. Схема генерации и передачи случайного шума в изученной системе. p — уровень экспрессии генов катаболических ферментов, E — концентрация ферментов в клетке, Nutrients — питательные вещества, для усвоения которых необходимы эти ферменты, μ — скорость роста клетки, Metabolism — метаболизм (обмен веществ), Noise source — источник шума. Положительные взаимосвязи (направления передачи шума) показаны стрелками, отрицательные — тупичками. Изображение из обсуждаемой статьи в Nature

О влиянии случайных колебаний на свойство живой клетки

Ключевые слова:  Гены, Интенсивность, Колебания, Молекулярная биология, периодика, Свойства клетки, Скорость роста

Автор(ы): Александр Марков

Опубликовал(а):  Доронин Федор Александрович

24 октября 2014

Свойства организма определяются не только генами и средой, но и случайным шумом, который неизбежно присутствует на всех уровнях биологической организации начиная с молекулярного. Наблюдение за жизнью бактериальных клеток в реальном времени позволило голландским биологам напрямую оценить вклад этого малоизученного фактора в изменчивость бактерий по таким важным параметрам, как скорость роста, уровень экспрессии генов и концентрация ферментов. Как выяснилось, все эти показатели подвержены сильным хаотическим колебаниям, причем флуктуации разных подсистем клетки сложным образом влияют друг на друга.

Изменчивость — фундаментальное свойство живых организмов, определения которого можно найти в любом учебнике или биологическом словаре. В этих определениях изменчивость обычно рассматривается как результат либо генетических различий между индивидами (такую изменчивость называют наследственной или генотипической), либо различающихся условий среды (ненаследственная, или модификационная изменчивость). При этом часто оговаривается (совершенно справедливо), что грань между двумя формами изменчивости — нечеткая и даже во многом искусственная, поскольку фенотип определяется сложным переплетением взаимодействующих генетических и средовых факторов. Например, то, как и в каких пределах будет меняться фенотип при колебаниях внешних условий, во многом определяется генами (см. Норма реакции), а то, каким образом данное генетическое изменение отразится на фенотипе, во многом зависит от среды.

Биологи проводят множество исследований, чтобы оценить относительный вклад генетических и средовых факторов в наблюдаемую изменчивость. Однако при этом часто упускают из виду, что кроме генов и среды существует еще и третий источник вариабельности — случайный шум, который обязательно (исходя из самых общих соображений) должен присутствовать в том или ином виде на всех уровнях биологической организации начиная с молекулярного.

Молекулярные процессы в клетке по своей природе стохастичны, о чем «Элементы» уже не раз рассказывали. Например, в новости Работу регуляторного белка впервые пронаблюдали под микроскопом («Элементы», 31.05.2007) говорится о том, как регуляторный белок ищет свой сайт связывания на хромосоме, раз за разом прикрепляясь к ней в случайных местах и совершая короткие «пробежки» (см. также: Разгадан механизм движения «шагающего белка», «Элементы», 29.05.2007).

Элемент стохастики в работе регуляторных генных сетей наиболее очевиден, потому что многие регуляторные белки — это «штучный товар», они присутствуют в клетке в небольшом количестве. Между тем отрегулировать экспрессию гена с абсолютной точностью едва ли возможно. Как добиться, чтобы в клетке постоянно находилось ровно 18 молекул данного белка? Наверняка будет получаться то 16, то 19. Эта вариабельность, в свою очередь, будет влиять на свойства клетки.

В онтогенезе многоклеточных случайный шум, возникающий на уровне молекул и клеток, по идее, должен был бы накапливаться, приводя к нестабильному фенотипу. Очевидно, в этом причина неполной пенетрантности многих мутаций, которые у одних особей проявляются в фенотипе, а у других нет, даже если они генетически идентичны и развивались в сходных условиях (см.: Избыточность регуляторных сетей делает развитие помехоустойчивым, «Элементы», 22.02.2010). Если же на самом деле генетически идентичные организмы, выращенные в одинаковых условиях, обычно оказываются очень похожими друг на друга, то это — нетривиальный факт, требующий объяснений (как бы непривычно ни звучало подобное утверждение). Самое общее объяснение, по-видимому, состоит в том, что у организмов в ходе эволюции неизбежно развиваются эффективные адаптации для повышения помехоустойчивости, такие как, например, регуляторные контуры, основанные на отрицательных обратных связях, и белки-шапероны (см.: Стресс помогает справиться с вредными мутациями, «Элементы», 17.01.2012).

Если стохастичность регуляторных генных сетей в последние годы изучается довольно активно, то о роли случайности в других базовых биологических процессах, таких как метаболизм (обмен веществ), известно гораздо меньше.

Исследователи из Нидерландского института атомной и молекулярной физики (AMOLF) отчасти восполнили этот пробел, проследив за жизнью индивидуальных бактерий E. coli в реальном времени. Ученых интересовала вариабельность таких параметров, как скорость роста клеток и уровень экспрессии (активности) генов ферментов, участвующих в метаболизме. Кроме того, в задачи исследования входил поиск причинно-следственных связей между колебаниями разных параметров клетки.

В ходе эксперимента бактерий кормили синтетическим, не встречающимся в природе сахаром лактулозой. Кишечные палочки утилизируют лактулозу при помощи ферментов LacY и LacZ, которые в обычных условиях используются для переваривания лактозы. Гены этих ферментов входят в состав хорошо изученного лактозного оперона. Лактулоза, в отличие от лактозы, не влияет на экспрессию лактозного оперона. Это дало возможность исследователям регулировать активность оперона (добавляя в среду то или иное количество индуктора — ИПТГ) независимо от количества пищи, получаемой бактериями. Это было необходимо, чтобы сравнить поведение бактерий в условиях, когда количество пищеварительных ферментов является лимитирующим фактором (ограничивающим рост) и когда этих ферментов производится с избытком (см. ниже). В лактозный оперон был добавлен ген зеленого флюоресцирующего белка, чтобы по силе флюоресценции можно было оценивать активность оперона и концентрацию ферментов в клетке.

Каждую бактерию, а затем ее потомков вплоть до 8–9-го поколения, фотографировали с интервалом в несколько минут (рис. 1; см.: Time-lapse microscopy). Компьютерный анализ полученных изображений позволил оценить колебания скорости роста клеток (μ) и концентрации ферментов в них (E) (рис. 2).

Эти колебания оказались, во-первых, вполне хаотическими, во-вторых — неожиданно большими по амплитуде. Например, скорость роста в одной и той же линии клеток может измениться вдвое всего за час-полтора, то есть за время, сопоставимое с интервалом между делениями (под «линией» понимается последовательность, включающая данную клетку, одного ее случайно выбранного потомка после деления, одного случайно выбранного «внука» и т. д.) При этом, как видно на рис. 2, колебания μ и Eне зависят от фазы клеточного цикла: моменты клеточных делений не приурочены ни к минимумам, ни к максимумам, ни к каким-либо иным «особым» точкам на графиках колебаний μ и E. Дочерняя клетка «наследует» от родительской клетки ее текущее состояние, но память у такой «наследственности» короткая: уже через несколько часов корреляция между исходным и нынешним состоянием клетки полностью исчезает (равно как и корреляция между состоянием сестринских клеток — потомков одной родительской бактерии).

Дальнейшие изыскания авторов сосредоточились вокруг вопроса о взаимном влиянии изучаемых параметров и их флуктуаций. Влияет ли шум на уровне концентрации ферментов на колебания скорости роста или, может быть, шум передается в обратном направлении? Оба варианта теоретически возможны. Понятно, что скорость роста может зависеть от концентрации катаболических ферментов, поскольку чем выше эта концентрация, тем быстрее усваивается пища. Возможно и обратное влияние за счет эффекта «разбавления» ферментов при быстром росте клетки.

Чтобы разобраться в направленности передачи шума (noise transmission), авторы оценивали корреляции между колебаниями μ и E в разные моменты времени. Идея в том, что если преобладает причинно-следственная связь, направленная от E к μ(концентрация ферментов влияет на скорость роста), то величина E в момент времени t будет лучше коррелировать с величиной μ в последующие моменты времени, чем в предшествующие. И наоборот, если преобладает влияние μ на E, то сильнее будет корреляция между величиной E в данный момент и предшествующими значениями μ.

Авторам удалось показать, что «передача шума» действительно имеет место, причем ее направленность зависит от условий. Если ферментов производится мало (при низкой концентрации индуктора ИПТГ), то концентрация ферментов оказывается лимитирующим фактором: она ограничивает рост. Как и следовало ожидать, в такой ситуации колебания E заметно сказываются на флуктуациях μ. Случайный шум частично передается от E к μ, так что в итоге до 30% наблюдаемой вариабельности клеток по скорости роста определяется вариабельностью по E.

Если же ферментов производится с избытком, то колебания их концентрации уже не влияют на скорость роста. В этом случае передача шума идет в основном в обратную сторону: от μ к E, за счет эффекта разбавления. Такой же эффект получается и в том случае, если кормить бактерий не лактулозой, а чем-нибудь другим: например, ацетатом, для утилизации которого не нужны ферменты катаболизма лактозы. В этом случае E не влияет на μ, и шум передается только от μ к E, но не в обратную сторону.

В ходе дополнительных экспериментов авторы показали, что флуктуации скорости роста сказываются (за счет разбавления) не только на концентрации ферментов катаболизма лактозы, но и на концентрации других белков в клетке.

Сложная статистическая обработка данных вместе с математическим моделированием в итоге привели авторов к схеме, показанной на рис. 3. Случайный шум генерируется в трех узлах системы, соответствующих уровню экспрессии генов катаболических ферментов (p), скорости роста клетки (μ) и метаболизму, который в данном случае рассматривается как некий «черный ящик», генерирующий собственный случайный шум.

От одних подсистем шум может передаваться другим по нескольким каналам, причем влияние может быть как положительным (когда рост одного показателя способствует росту другого), так и отрицательным. В изученной системе отрицательная связь — это обратное влияние μ на E за счет эффекта разбавления (тупичок на схеме). Авторы подчеркивают, что отрицательные связи важны для поддержания гомеостаза, поскольку благодаря им случайные колебания разных подсистем отчасти сглаживают друг друга. В данном случае повышенная концентрация ферментов ведет к ускорению роста, что, в свою очередь, приводит к разбавлению ферментов, что отрицательно сказывается на скорости роста.

Но главным результатом работы, конечно же, является прямая демонстрация того, что ключевые параметры клетки, такие как скорость роста, экспрессия жизненно важных генов и обмен веществ, подвержены сильным хаотическим колебаниям. Случайный шум характерен не только для отдельных генно-регуляторных сетей: по-видимому, он пронизывает все важнейшие клеточные процессы и подсистемы. Осознание этого факта должно привести к переосмыслению роли случайности в формировании фенотипа и в эволюции живых организмов.

Источник: Daniel J. Kiviet, Philippe Nghe, Noreen Walker, Sarah Boulineau, Vanda Sunderlikova & Sander J. Tans. Stochasticity of metabolism and growth at the single-cell level // Nature. 2014. V. 514. P. 376–379.


В статье использованы материалы: Элементы


Средний балл: 10.0 (голосов 1)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Кристалл иодида свинца
Кристалл иодида свинца

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

I МОСКОВСКАЯ ОСЕННЯЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ПЕРОВСКИТНОЙ ФОТОВОЛЬТАИКЕ
14-15 октября 2019 года состоится школа - конференция молодых ученых - I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019).

Золото России на Международной Химической Олимпиаде
30 июля в Париже завершилась 51-я Международная химическая олимпиада. Она была рекордной по числу участников - 309 школьников из более, чем 80 стран. Олимпиада прошла под девизом "Двигаем науку вместе" ("Make the science together"). Сборная России на олимпиаде завоевала 4 золотые медали и в медальном зачете поделила 1-2 место с командой Кореи. Победителями стали Михаил Матвеев (Вологда) и три москвича - Даниил Бардонов, Алексей Шишкин и Никита Чернов.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.