Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Схематическое изображение, а также фото и изображение, полученное при помощи сканирующего электронного микроскопа, созданного композита на основе p- и n-легированных углеродных нанотрубок. Фото: J. Appl. Phys.

Легированные углеродные нанотрубки для термоэлектроники

Ключевые слова:  Легирование, Термоэлектроника, Углеродные нанотрубки, Умная ткань, УНТ

Опубликовал(а):  Доронин Федор Александрович

08 октября 2014

Как показала последняя работа ученых из США, термоэдс, возникающая в углеродных нанотрубках, может быть увеличена с помощью простого легирования. Сами исследователи считают, что полученный ими результат будет иметь важное значение для создания так называемых умных тканей, позволяющих отводить лишнее тепло, преобразуя его в электричество.

Термоэлектрические материалы позволяют преобразовывать тепло в электричество. Таким образом, их рассматривают в качестве одного из способов уменьшения глобального дефицита энергии. Они также могут использоваться для охлаждения компьютерных чипов и других электронных устройств. Кроме того, подобные материалы могут найти свое применение в автомобилях, для получения полезной энергии из «отходов» тепла в ядерных реакторах и даже для повышения эффективности солнечных батарей.

Однако для использования в реальных задачах термоэлектрические материалы должны хорошо проводить электричество, но при этом плохо проводить тепло. Также они должны иметь высокую термоэдс (или так называемый коэффициент Зеебека), которая представляет собой отношение напряжения к разности температур на концах образца.

Углеродные нанотрубки позволяют создавать хорошие термоэлекрические материалы, но до сих пор ученым не удавалось сформировать структуру, обладающую термоэдс, величина которой позволяла бы говорить о потенциальном коммерческом использовании.

Теперь же команда исследователей из Wake Forest University (США) показала, что легирование нанотрубок p- и n-примесями позволяет увеличить выходную мощность термопары из углеродных нанотрубок почти до 15 нВт (в расчете на одну термопару) при максимальной разнице температур в 50 градусов по шкале Кельвина. Эта мощность почти в 44 раза превышает измеренные ранее параметры для чистых углеродных нанотрубок. Она соответствует почти в 6 раз более высокому коэффициенту Зеебека.

Чтобы получить такую мощность на практике, ученые создали композит на основе углеродных нанотрубок и неактивного базового полимера. В качестве примеси p-типа использовался кислород (нанотрубки размещались на воздухе), а роль примеси n-типа выполнял полиэтилен. Как считают сами ученые, ключевую роль в их работе играет именно материал, обеспечивающий n-примесь, поскольку до сих пор считалось довольно трудным синтезировать нанотрубки n-типа с большой отрицательной термоэдс, которые при этом имели бы пониженную теплопроводность. Эксперименты показали, что нанотрубки, легированные p- и n-примесями, соединенные между собой, образуют готовую термопару.

Произведенные учеными улучшения термоэлектрических параметров (и выходной мощности) означают, что композиты на основе углеродных нанотрубок могут быть в перспективе использованы для создания легких, гибких и прочных термоэлектрических тканей, пригодных для применения в маломощной электронике – к примеру, в качестве инструмента для отвода лишнего тепла. Ученые уже работают над проектом такого текстиля. Их идея заключается в том, чтобы предложить ткани, которые могли бы заменить повседневные материалы (к примеру, покрытия для автомобильных сидений). Причем целью является создание достаточно дешевых аналогов существующих материалов, чтобы был стимул активно внедрять их в повседневную жизнь.

В перспективе исследователи планируют продолжить увеличивать плотность электрической мощности, получаемой при помощи их композитов на основе углеродных нанотрубок. Кроме того, они заинтересованы в создании покрытий большой площади (на данный момент самый крупный из разработанных ими образцов не превышает 5 × 5 см), которые переносили бы повседневное использование и даже чистку. Первый эксперимент в этом направлении уже был проведен: совершенно случайно один из участников группы забыл сформированный образец в кармане брюк, и он перенес как ежедневную носку, так и процесс стирки без заметного снижения мощности. Результаты измерений показали, что даже без дополнительных усовершенствований созданные композиты являются довольно прочными.

Подробные результаты работы опубликованы в журнале Journal of Applied Physics.

Журнал «Российские нанотехнологии» № 7–8 2014 год






Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Личная жизнь атомов под пучком
Личная жизнь атомов под пучком

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ» (Интересные научные события 2020 года от Американского физического общества (APS): Новый век сверхпроводимости. Магические углы в графене. Новые рекорды LIGO и Virgo: сверхмассивные и асимметричные слияния черных дыр. Свет от темной материи в эксперименте Xenon. Чего не хватает для создания квантового интернета? Коперниканский переворот в нейронных сетях. Червякомешалка. Вселенский метроном и предел точности атомных часов. Благородные металлы и графен против токсичных газов. Мультиферроик с ферродолинным упорядочением. Борные сенсоры азотосодержащих загрязнителей.

Наносистемы: физика, химия, математика (2020, Т. 11, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume11/11-6
Там же можно скачать номер журнала целиком.

С Новым годом!
Дорогие друзья и коллеги!
Поздравляем с наступающим 2021 годом!
Желаем всем хорошего настроения и здоровья, удачи во всем и новых достижений!

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.