Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Эластичный дисплей на квантовых точках

Ключевые слова:  дисплеи, квантовые точки, периодика

Автор(ы): Смирнов Евгений Алексеевич

Опубликовал(а):  Гольдт Илья

19 августа 2014

В микроэлектронике наметился заметный перекос или, если угодно, тренд в сторону различных гибких решений, не требующих подложек, выполненных из стекла или кремния. Вот и дисплеи не стали исключением, даже такие экзотические, как дисплеи на квантовых точках.



Итак, что же это за чудный объект такой, квантовая точка? Если мы возьмём кусочек полупроводника (кремния или сульфида кадмия, например) и начнём его дробить в темноте под фиолетовой лампой, то в какой-то момент мы увидим люминесценцию. При этом, чем меньше будет размер частиц полупроводника или квантовой точки, тем короче длину волны люминесценции мы сможем наблюдать (сдвиг в синюю область спектра). Объясняется сие явление увеличением ширины запрещённой зоны полупроводника с уменьшением размера наночастицы. Аналогичное явление будет наблюдаться, если мы подключим квантовую точку к батарейке, и называется оно электролюминесценция. Подсветка Ваших часов скорее всего работает на данном эффекте.


Запрещённая зона полупроводника или диаметр наночастицы и цвет раствора наночастиц ядро-оболочка, а также спектр материалов для изготовления квантовых точек с заданными оптическими свойствами. Источник

Таким образом, чтобы получить красный, зелёный или синий цвета нам нет необходимости разрабатывать новые материалы и технологии их нанесения, как, например, было с OLED-дисплеями. Вместо этого, мы можем синтезировать 3 разных раствора и просто смешать их, чтобы получить заданный цвет или же использовать по отдельности для создания пикселей дисплея. Соответственно, учёные с самого открытия квантовых точек на заре 90-х годов стали задумываться об использовании их в дисплеях, особенно, после удачного внедрения LCD матриц.

Однако осуществить задуманное оказалось не так просто, и вплоть до начала нулевых реального прототипа работающих пикселей или целого дисплея попросту не существовало. Буквально пару лет назад в 2011 году компания Samsung, заинтересовавшись новыми типами дисплеев, провела ряд изысканий, что позволило создать полноценный QLED (quantum dots light emitting diode) дисплей.

В свежей работе, опубликованной в журнале ACSNano, группа учёных из Сингапура и Турции представила концепцию очень гибкого дисплея на квантовых точках, который – кто знает – может быть, через пару лет будет анонсирован вместе с новым Samsung 7, например.

Основные проблемы создания таких дисплеев: ограниченный круг подходящих материалов и плохая механическая устойчивость к перегибам и скручиванию. Однако, использование полиимида, каптона, позволяет решить часть проблем, оптимизировать процесс и получить на выходе довольно большие (квадратные миллиметры) QLED с яркостью 20 000 кд/м2, что на сегодняшний день является рекордом в области гибких диодов на квантовых точках.


(a) Схема разработанного QLED (слои сверху вниз: полимерная плёнка из Каптона/Al/ZnO наночастицы/CdSe-CdS-ZnS квантовые точки/полимер TCTA/MoO3/Ag), (b) AFM-изображение полученной плёнки, (с) диаграмма электронных уровней и (d) работающий QLED

Механические свойства полученного устройства настолько хороши, что его можно использовать как стикер, приклеивая и отклеивая по нескольку раз, а также изгибая во всевозможных направлениях (яркость в относительных единицах падает не значительно, не более 5%). Что касается оптических характеристик, то изготовленные диоды выдержали тест, продемонстрировав максимальную яркость в 20 000 кд/м2 при внешней квантовой эффективности в 4%.


(a) Нормализованные спектры электролюминесценции для изготовленных диодов, (b) охват спектра RGB в CIE координатах (для сравнения приведён аналогичный охват для стандарта HDTV), (с) яркость и (d) внешний квантовый выход диодов

И в заключение для примера приведу демонстрацию работы диодов в реальных, так сказать, полевых условиях:


Демонстрация работы QLED на плоских (a-d) и изогнутых поверхностях (e-f)

Оригинальная статья в ACSNano (DOI: 10.1021/nn502588k)


В статье использованы материалы: ACSNano (DOI: 10.1021/nn502588k), habrahabr


Средний балл: 10.0 (голосов 2)

 


Комментарии
Пастух Евфграфович, 19 августа 2014 15:43 

За гибкостью - будущее!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Цветок гексаферрита стронция
Цветок гексаферрита стронция

Премии Правительства Москвы молодым ученым за 2019 год
Объявлены лауреаты премии Правительства Москвы молодым ученым за 2019 год. Премией отмечены 50 работ молодых столичных ученых. Среди лауреатов 12 сотрудников МГУ имени М.В.Ломоносова. Конкурс на получение премий Правительства Москвы молодым ученым проводится с 2013 года. Торжественное награждение победителей состоится 7 февраля 2020 года в Государственном Кремлевском дворце.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Перерождение кремния: от полупроводника к металлу. Морская губка – основа для создания новых наноструктурных композитов. Нитрид-борные аналоги углеродных колец. Лучшие научные сюжеты года по версии APS. Сверхпроводимость ставит новый температурный рекорд. Звук переносит массу? Всяко-разно.

Наносистемы: физика, химия, математика (2019, том 10, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume10/10-6
Там же можно скачать номер журнала целиком.

Да пребудет с вами сила плазмонов!
А.А.Семенова, Э.Н.Никельшпарг, Е.А.Гудилин, Н.А.Браже
Ученые Московского университета приблизились к решению проблем современной медицинской диагностики с использованием единичных клеток и их органелл путем разработки новых неинвазивных оптических методов анализа.

Юрий Добровольский: «Через 50 лет вся энергия будет вырабатываться биоорганизмами»
Андрей Бабицкий, Юрий Добровольский
Главный редактор ПостНауки Андрей Бабицкий побеседовал с химиком Юрием Добровольским о науке о материалах, будущем энергетики и новых аккумуляторах

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.