Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Эластичный дисплей на квантовых точках

Ключевые слова:  дисплеи, квантовые точки, периодика

Автор(ы): Смирнов Евгений Алексеевич

Опубликовал(а):  Гольдт Илья

19 августа 2014

В микроэлектронике наметился заметный перекос или, если угодно, тренд в сторону различных гибких решений, не требующих подложек, выполненных из стекла или кремния. Вот и дисплеи не стали исключением, даже такие экзотические, как дисплеи на квантовых точках.



Итак, что же это за чудный объект такой, квантовая точка? Если мы возьмём кусочек полупроводника (кремния или сульфида кадмия, например) и начнём его дробить в темноте под фиолетовой лампой, то в какой-то момент мы увидим люминесценцию. При этом, чем меньше будет размер частиц полупроводника или квантовой точки, тем короче длину волны люминесценции мы сможем наблюдать (сдвиг в синюю область спектра). Объясняется сие явление увеличением ширины запрещённой зоны полупроводника с уменьшением размера наночастицы. Аналогичное явление будет наблюдаться, если мы подключим квантовую точку к батарейке, и называется оно электролюминесценция. Подсветка Ваших часов скорее всего работает на данном эффекте.


Запрещённая зона полупроводника или диаметр наночастицы и цвет раствора наночастиц ядро-оболочка, а также спектр материалов для изготовления квантовых точек с заданными оптическими свойствами. Источник

Таким образом, чтобы получить красный, зелёный или синий цвета нам нет необходимости разрабатывать новые материалы и технологии их нанесения, как, например, было с OLED-дисплеями. Вместо этого, мы можем синтезировать 3 разных раствора и просто смешать их, чтобы получить заданный цвет или же использовать по отдельности для создания пикселей дисплея. Соответственно, учёные с самого открытия квантовых точек на заре 90-х годов стали задумываться об использовании их в дисплеях, особенно, после удачного внедрения LCD матриц.

Однако осуществить задуманное оказалось не так просто, и вплоть до начала нулевых реального прототипа работающих пикселей или целого дисплея попросту не существовало. Буквально пару лет назад в 2011 году компания Samsung, заинтересовавшись новыми типами дисплеев, провела ряд изысканий, что позволило создать полноценный QLED (quantum dots light emitting diode) дисплей.

В свежей работе, опубликованной в журнале ACSNano, группа учёных из Сингапура и Турции представила концепцию очень гибкого дисплея на квантовых точках, который – кто знает – может быть, через пару лет будет анонсирован вместе с новым Samsung 7, например.

Основные проблемы создания таких дисплеев: ограниченный круг подходящих материалов и плохая механическая устойчивость к перегибам и скручиванию. Однако, использование полиимида, каптона, позволяет решить часть проблем, оптимизировать процесс и получить на выходе довольно большие (квадратные миллиметры) QLED с яркостью 20 000 кд/м2, что на сегодняшний день является рекордом в области гибких диодов на квантовых точках.


(a) Схема разработанного QLED (слои сверху вниз: полимерная плёнка из Каптона/Al/ZnO наночастицы/CdSe-CdS-ZnS квантовые точки/полимер TCTA/MoO3/Ag), (b) AFM-изображение полученной плёнки, (с) диаграмма электронных уровней и (d) работающий QLED

Механические свойства полученного устройства настолько хороши, что его можно использовать как стикер, приклеивая и отклеивая по нескольку раз, а также изгибая во всевозможных направлениях (яркость в относительных единицах падает не значительно, не более 5%). Что касается оптических характеристик, то изготовленные диоды выдержали тест, продемонстрировав максимальную яркость в 20 000 кд/м2 при внешней квантовой эффективности в 4%.


(a) Нормализованные спектры электролюминесценции для изготовленных диодов, (b) охват спектра RGB в CIE координатах (для сравнения приведён аналогичный охват для стандарта HDTV), (с) яркость и (d) внешний квантовый выход диодов

И в заключение для примера приведу демонстрацию работы диодов в реальных, так сказать, полевых условиях:


Демонстрация работы QLED на плоских (a-d) и изогнутых поверхностях (e-f)

Оригинальная статья в ACSNano (DOI: 10.1021/nn502588k)


В статье использованы материалы: ACSNano (DOI: 10.1021/nn502588k), habrahabr


Средний балл: 10.0 (голосов 2)

 


Комментарии
Пастух Евфграфович, 19 августа 2014 15:43 

За гибкостью - будущее!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Наномалина
Наномалина

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 3)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-3
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.