Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Самовосстанавливающийся пластик

Ключевые слова:  University of Illinois, Полимеры, Регенерация, Термопласты

Опубликовал(а):  Доронин Федор Александрович

29 мая 2014

Глядя на гладкий лист пластика, лежащий в одной из лабораторий университета Иллинойса (University of Illinois), невозможно догадаться, что совсем недавно в нём зияло отверстие. Исследователям удалось разработать материал с невероятной способностью к регенерации.

Ранее самовосстанавливающиеся материалы могли бороться только с микроскопическими трещинами и отверстиями. Но созданный американскими учёными пластик заживляет на себе внушительные "ранения".

"Мы показали, что неживая система синтетических материалов может регенерировать подобно некоторым живым биологическим системам", – рассказывает один из авторов исследования профессор химии Джеффри Мур (Jeffry S. Moore).

Создание самовосстанавливающегося пластика стало возможным благодаря предыдущей разработке команды — особому сосудистому материалу. Используя сформированные волокна, исследователи создали материалы с сетью капилляров. Вдохновение учёные черпали, наблюдая за биологическими кровеносными системами.

Два соседних капилляра, идущие параллельно друг другу, заполняются специальными химическими веществами, которые вытекают в случае повреждения "сосудов". Две жидкости смешиваются и образуют гель, который охватывает разрыв, вызванный повреждением, заполняя трещины и отверстия. Это похоже на то, как в нашей кровеносной системе тромбоциты и белок фибрин образуют сгусток крови. Затем гель затвердевает, превращаясь в крепкий полимер, восстанавливающий механическую прочность пластика.

"Сосудистая доставка позволяет подводить к месту деформации большой объём лечебных агентов и охватывать значительные зоны повреждений, – рассказывает профессор материаловедения и инженерии Нэнси Соттос (Nancy Sottos). – Более того, этот подход обеспечивает несколько циклов реставрации в том случае, если повреждение было неоднократным".

Во время эксперимента гель заполнил разрыв шириной более 35 миллиметров за 20 минут, а механические функции материала восстановились более чем на половину в течение трёх часов.

"Для того чтобы успешно осуществить регенерацию, нам пришлось преодолеть множество внешних факторов, в том числе силу тяжести, – говорит руководитель исследования профессор аэрокосмической инженерии Скотт Уайт (Scott White). – Реагирующие жидкости, которые мы используем, образовывают гель достаточно быстро, так что он начинает затвердевать немедленно. Если этого не будет происходить, жидкость просто выльется за пределы поврежденной области. Образование геля сохраняет реагенты в жидком состоянии, а так как материал ещё недостаточно твёрдый, процесс восстановления может быть продолжен за счёт привлечения большего количества жидкости в отверстие".

Команда продемонстрировала свою систему регенерации на двух известнейших типах пластмасс:термопластах.

Исследователи также научились "настраивать" химические реакции, чтобы управлять скоростью образования и скоростью затвердевания геля (в зависимости от вида повреждения). Например, при попадании в материал пули кроме центрального отверстия образуется ещё и серия радиальных трещин. Поэтому реакция геля может быть замедлена, чтобы химическое вещество проникло во все щели до затвердевания.

Учёные уверены, что такая технология самовосстанавливающегося пластика, похожая на биологическое исцеление, может быть внедрена в производство уже в совсем недалёком будущем. Простая и эффективная методика изготовления сосудистых материалов уже существует, теперь необходимо оптимизировать состав регенерирующих химических агентов для разных типов материалов.

Такая способность может стать очень полезной для коммерческих товаров (к примеру, поцарапанный бампер автомобиля мог бы восстановить себя сам за несколько минут после аварии). Но ещё важнее изобретение для тех деталей и изделий, которые трудно заменить или отремонтировать, например, тех, что используются в аэрокосмической промышленности или на дне глубоких скважин.

Так как нынешняя работа частично финансируется ВВС США, вполне возможно, что американская армия рано или поздно получит в своё распоряжение, например, самовосстанавливающиеся щиты для военных.

Правда, в настоящее время восстановленный пластик становится несколько хуже оригинала: прочность восстанавливается примерно до 62% от первоначальной. Исследователям также предстоит проверить реакцию "отремонтированного" материала на реальные условия, такие как влажность или экстремальные температуры.

Подробности исследования были опубликованы в журнале Science.


Источник: Вести



Комментарии
А сырую резину не пробовали? Во-первых - колотых пробоин не даёт, во-вторых - гарантированно набухает в бензине или другой подобной органике и плотно смыкает края пробоины. Ну и некий клей для стыка до кучи. Скажем, тот же каучук, вмешанный в слабосшитую резину.

Пробили - резина набухла и плотно затянула пробоину, затем каучук слегка растворился и заклеил её.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Неземная красота цветных метаморфоз ферромагнитных жидкостей
Неземная красота цветных метаморфоз ферромагнитных жидкостей

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Графеновые маски выходят на борьбу с Covid 19. Графен губит вирусы. Сенсор для противотуберкулезного препарата. Взаимодействие Дзялошинского-Мории и механическая деформация. Скирмионы займутся растяжкой?

Ученые разработали технологию трехмерной печати генно-инженерных конструкций для направленной регенерации костных тканей
Группа российских ученых разработала оригинальную технологию трехмерной печати персонализированных изделий из биоактивной керамики и создала персонализированные ген-активированные имплантаты. Проведен комплексный физико-химический и биохимический анализ экспериментальных образцов ген-активированных материалов и персонализированных имплантатов для инженерии и направленной регенерации костных тканей, полученных с использованием технологий трехмерной печати, включая доклинические исследования на крупных животных.

Ученые из ИОФ РАН осуществили лазерный перенос графена
Исследователи из Института общей физики им. А.М. Прохорова РАН (ИОФ РАН) напечатали «смятый» графен на кремниевой подложке, используя метод лазерно-индуцированного прямого переноса. Этот относительно простой процесс может заменить трудоемкие литографические способы создания гарфеновых структур в перспективных устройствах микроэлектроники.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.