Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Лента.ру: "В поисках стабильности"

Ключевые слова:  117-й элемент, История, ОИЯИ, Синтез новых химических элементов, Таблица Менделеева

Опубликовал(а):  Доронин Федор Александрович

29 мая 2014

В настоящее время синтез трансурановых элементов в основном проводится в четырех странах: США, России, Германии и Японии. В России новые элементы получают в Объединенном институте ядерных исследований (ОИЯИ) в Дубне, в США — в Национальной лаборатории Оук-Ридж в Теннеси и Национальной лаборатории Лоуренса в Ливерморе, в Германии — в Центре по изучению тяжелых ионов Гельмгольца (он же — Институт тяжелых ионов) в Дармштадте, в Японии — в Институте физико-химических исследований (RIKEN).

Всего ученые синтезировали 26 трансурановых элементов, начиная с нептуния (N=93) и заканчивая элементом с номером N=118. Немецкие ученые из Центра по изучению тяжелых ионов Гельмгольца в серии экспериментов 2013–2014 годов планировали получить следующий, 119 элемент таблицы Менделеева, но потерпели неудачу. Они обстреливали ядра берклия (N=97) ядрами титана (N=22), однако анализ данных эксперимента не показал наличия нового элемента. На пути к острову стабильности, начиная с 1940 года, на котором ученые пытаются найти устойчивые изотопы трансурановых элементов.

Модели атомных ядер

В отличие от физики элементарных частиц, в которой современные исследователи чаще всего имеют дело с релятивистскими скоростями (скоростями, сравнимыми со скоростью света), в физике атомного ядра рассматриваются существенно нерелятивистские эффекты. Поэтому обычным математическим аппаратом для ядерной физики служит нерелятивистская квантовая механика, основным уравнением которой является уравнение Шредингера. В физике же частиц используется релятивистское обобщение квантовой механики на случай квантовых полей — квантовая теория поля.

Магические числа — это ряд 2, 8, 20, 28, 50, 82, 126 (только для нейтронов), в котором каждое число равно количеству нуклонов в ядре. Ядра с таким числом нуклонов имеют наиболее сильную энергию связи по сравнению со своими соседями в таблице нуклидов, в которой нуклиды размещены следующим образом: по горизонтали слева направо по возрастанию указано число протонов, а по вертикали сверху вниз — число нейтронов.

Ядро состоит из нуклонов — положительно заряженных протонов и электронейтральных нейтронов. Массы этих частиц примерно равны; в отличие от бесструктурных электронов нуклоны состоят из кварков. Протон состоит из одного d-кварка и двух u-кварков, нейтрон — из одного u-кварка и двух d-кварков. В свободном состоянии кварки не наблюдаются. Это явление получило название асимптотической свободы — в калибровочной теории при увеличении расстояния между частицами сила взаимодействия между ними значительно возрастает. Кварки в нуклонах, а также протоны и нейтроны в ядре взаимодействуют посредством ядерных (сильных) сил.

Основная трудность, возникающая при построении моделей атомного ядра, заключается в необходимости учета большого количества параметров, описывающих динамику системы. Например, уже в случае классической механики аналитическое решение задачи трех тел в общем случае неизвестно. Поэтому для предсказания свойств ядер используют специальные модели, в которые введены допущения, уменьшающие число параметров, но и ограничивающие область применимости теории.

Традиционно разделяют три группы ядерных моделей. Одночастичные ядерные модели используют представление о ядре как совокупности независимых частей; теории с сильным взаимодействием описывают коррелированное движение частиц в ядре. Обобщенные модели включают в себя оба представления. Количество различных ядерных моделей велико, и не все они используют одинаковые исходные положения.

Нуклиды — виды атомов некоторого химического элемента, находящиеся в основном или определенном изомерном состоянии (изотоны и изотопы). Элементы с одинаковым зарядовым числом (числом протонов в ядре), но разными массовыми числами (суммарным количеством протонов и нейтронов) называются изотопами. Например, водород имеет изотоп тритий, в котором атомное ядро состоит из одного протона и двух нейтронов. Изотонами называют элементы с одинаковым числом нуклонов. В таблице нуклидов изотоны и изотопы располагаются на одинаковых вертикалях и горизонталях, соответственно.

В 1936 году Нильс Бор предложил капельную (гидродинамическую) модель атомного ядра. В ней ядро представляется каплей со смесью протонной и нейтронной жидкостей, которая описывается уравнениями классической гидродинамики. В этой модели используется аналогия между поведением молекул в жидкости и нуклонов в ядре. Объем капли пропорционален числу нуклонов (не более 300 частиц), заряженная ядерная жидкость считается несжимаемой. Плотность жидкости равна плотности ядерного вещества и не меняется внутри объема, но резко уменьшается у поверхности капли. Независимые движения нуклонов в такой модели невозможны, однако при колебании поверхности капля может развалиться, что интерпретируется как распад ядра.

Капельная модель качественно описывает описывает свойства ядра как целого (например, насыщение — пропорциональность энергии связи ядра массовому числу) и приводит к правильным формулам для энергии связи (формуле Вайцзеккера) и зависимости радиуса ядра от его массового числа (суммы протонов и нейтронов в ядре). К недостаткам модели можно отнести использование большого числа гидродинамических параметров, которые имеют отношение к физике ядра только на уровне аналогий. Также капельная модель не объясняет устойчивость ядер с магическим числом протонов и нейтронов.

pic_1.jpegРис. 1. В таблице Менделеева ядра с номерами от 93 до 118 получены искусственным путем. Изображение: Alessio Rolleri/ wikimedia.org.

В 1950 году Мария Гёпперт-Майер и Ханс Йенсен предложили оболочечную модель, которая успешно объяснила наличие устойчивых ядер с магическим числом протонов и нейтронов. Модель связывает устойчивость атомного ядра с заполнением энергетических уровней оболочек, которые, по аналогии с электронными оболочками атома, образуют ядро. Каждые нуклон и протон в такой модели находятся на определенной оболочке (расстоянии от центра атома или энергетическом уровне) и двигаются независимо друг от друга в некотором самосогласованном поле. Независимость движений нуклонов в ядре в оболочечной модели противоречит гидродинамической модели. Считается, что чем более полно заполнены энергетические уровни ядра, тем более устойчивым является изотоп. Модель хорошо объясняет устойчивость атомных ядер, спины и магнитные моменты, но применима лишь к невозбужденным или легким и средним по массовому числу ядрам.

Коллективная модель была разработана в 1950-х годах Оге Бором, Джеймсом Рейнуотером и Беном Моттельсоном на основе объединения капельной и оболочечной моделей. В этом случае ядро состоит из остова — внутренней части, в которой находятся нуклоны на заполненных оболочках, и внешней оболочки. Остов может менять свою форму под действием наружных нуклонов, а те, в свою очередь, движутся в поле остова. Деформации остова описываются гидродинамической моделью, а движение нуклонов во внешней оболочке — оболочечной. Теория хорошо описывает квадрупольные электромагнитные переходы между уровнями энергии ядер.

Другие модели позволяют объяснить различные тонкие свойства атомных ядер. Например, в оптической модели ядра используется аналогия с прохождением частиц света через полупрозрачную пластину. Такое представление применяется для описания упругого рассеяния нуклонов на ядрах.

Остров стабильности

В соответствии с оболочечной моделью ядра, в которых полностью заполнены энергетические оболочки, характеризуются высокой стабильностью. Такие элементы образуют так называемый «остров стабильности» в отличие от неустойчивых ядер соседних элементов. Исследования ученых по синтезу трансурановых элементов как раз и направлены на достижение этого острова. Первыми элементами, относящимися к острову стабильности, должны стать изотопы, имеющие порядковые номера 114 и 126; такие номера соответствуют магическому и дважды магическому числам. Изотопы флеровия (114-й элемент), полученные в Дубне, имеют период полураспада до 2,7 секунд. Согласно оболочечной теории, должен существовать изотоп Fl-298 c магическим числом нейтронов N=184 с периодом полураспада до 10 минут. Ученым пока не удалось синтезировать такое ядро.

pic_1_10.jpg

Рис. 2. «Карта» с изображением «острова стабильности». Изображение: НИИ ЯФ МГУ.

Для сравнения, соседние элементы с числами протонов в ядре, равными 113 и 115, имеют периоды полураспада до 19,6 секунды (для Uut-286) и 0,156 секунды (для Uup-289) соответственно. 113-й и 115-й элементы еще официально не зарегистрированы Международным союзом теоретической и прикладной химии (ИЮПАК).

Синтез элементов и установки

preview_1_7.jpg

Рис. 3. Георгий Флеров.
Фото: ОИЯИ.

Большинство первых трансурановых элементов были получены при участии Гленна Сиборга в американской Радиационной лаборатории Лоуренса в Беркли. Первый элемент — нептуний Np-239 — был синтезирован в 1940 году Эдвином Макмилланом и Филиппом Абельсоном. Самый долгоживущий изотоп этого элемента, Np-237, имеет период полураспада более двух миллионов лет. Изотоп был открыт с помощью бомбардировки U-238 нейтронами. Поскольку изотоп имеет время жизни, малое по сравнению со временем существования Земли, его содержание на планете ничтожно мало.

Второй трансурановый элемент — плутоний — не имеет стабильных изотопов. Pu-239 имеет период полураспада, равный 24100 годам, низкое тепловыделение (образец имеет температуру, сравнимую с температурой человеческого тела) и критическую массу, равную десяти килограммам, что делает его удобным для использования в качестве начинки для ядерной бомбы. Критическая масса — минимальное количество вещества, необходимое для самоподдерживающейся цепной реакции.

112-й элемент — нобелий — впервые был синтезирован в 1963–1967 годах в ОИЯИ под руководством Георгия Флерова. Позднее трансурановые элементы получались группами ученых из США, СССР и ФРГ. К настоящему времени трансурановые элементы синтезированы до 118-го включительно. Изотоп 117 элемента был получен бомбардировкой берклия-249 с Z=97 ионами кальция-48 на ускорителе У-400 Лаборатории ядерных реакций ОИЯИ. 117-й и 118-й элементы также еще официально не зарегистрированы ИЮПАК.

Циклотрон У-400 в Дубне заработал в Лаборатории ядерных реакций в 1978 году. По сравнению с установкой У-200 диаметр циклотрона увеличился с двух метров до четырех. К 1993 году был введен в эксплуатацию циклотрон У-400М, который позволяет получать пучки ядер с удельной энергией связи 35–45 мегаэлектронвольт. Такие ядра (на низкой энергии) потом могут направляться в ускоритель У-400.

pic_2_2.png

Рис. 4. Рисунок из патента Эрнеста Лоуренса, демонстрирующий работу циклотрона. Фото: .wikimedia.org.

Циклотрон представляет собой тип нерелятивистских ускорителей, в которых заряженная частица движется в однородном магнитном поле большого электромагнита. Циклотрон имеет два дуанта (в виде буквы D), выполняющих роль электродов, к которым приложено электрическое напряжение. Полярность электродов меняется каждый раз, когда частица совершает половину своего оборота. Это увеличивает скорость, энергию и диаметр траектории частицы, оставляя период ее вращения постоянным. Таким образом, в циклотроне однородное магнитное поле заставляет частицу под действием центростремительной составляющей силы Лоренца двигаться по окружности, радиус которой увеличивается под влиянием электрического поля, так что частица раскручивается по спирали.

pic_3_38.jpg

Рис. 5. Национальная лаборатория Лоуренса в Ливерморе. Фото: llnl.gov/ wikipedia.org.

pic_4_26.jpg

Рис. 6. Сепаратор в Дармштадте. Фото: Gaby Otto/ GSI Helmholtzzentrum für Schwerionenforschung GmbH. Сепаратор предназначен для разделения различных видов изотопов.

pic_5_28.jpg

Рис. 7. Лаборатория ядерных реакций в ОИЯИ. Фото: ОИЯИ.

pic_6.jpeg

Рис. 8. Сепаратор в Японии. Фото: nishina.riken.jp.

Пытаясь достичь острова стабильности, ученые продолжают синтезировать новые изотопы трансурановых элементов. Кроме фундаментального значения такие исследования приводят к большому числу прикладных открытий и технологий, широко используемых в различных областях человеческой жизни, например в радиомедицине, экологии, производстве оружия.


Источник: NNN, Лента




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Сферическая частица оксида титана
Сферическая частица оксида титана

Периодическую таблицу Менделеева опять улучшили: наночастицы пятивалентного плутония
Соединения шестивалентного плутония в щелочной среде могут привести к кристаллизации фазы (NH4)PuO2CO3, которая стабильна в течение нескольких месяцев и содержит пятивалентный плутоний. Получение новой фазы пятивалентного плутония фундаментально интересно и открывает новые возможности в разработке более эффективных технологий переработки радиоактивных отходов.

MAPPIC 2019. Второй день
15 октября 2019 года прошел второй день I Московской осенней международной конференции по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.