Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Парад нанотехнологий: наноэлектроника и оборудование. Часть 3

Ключевые слова:  RUSNANOPRIZE 2013, Наноструктуры, Наноэлектроника, Научное оборудование, периодика, Технологии

Автор(ы): Денис Андреюк

Опубликовал(а):  Доронин Федор Александрович

29 сентября 2013

Наноэлектроника и оборудование

Продолжаем серию статей с кратким обзором технологий, номинированных на получение международной премии в области нанотехнологий RUSNANOPRIZE 2013. В этой части рассмотрим технологии по двум направлениям:

- микро- и наноэлектроника

- научное и технологическое оборудование для формирования и изучения наноструктур

Полупроводники: традиционные подходы, новые достижения

Одно из быстроразвивающихся направлений в полупроводниковой промышленности – это технологии для светодиодного освещения. Коллектив российских ученых предложил решение серьезной проблемы на пути повышения эффективности светодиодов, а именно, проблемы выхода фотонов из активной области светогенерации. Была теоретически обоснована, экспериментально подтверждена и реализована в промышленном варианте технология создания наноразмерных рельефных структур на сапфировой подложке для светодиодов на основе множественных квантовых ям InAlGaN/GaN. Кроме этого, структура самой активной области была оптимизирована. В результате удалось существенно снизить вклад безызлучательных процессов и уменьшить потери за счет внутреннего отражения фотонов в активной области. Суммарно технология позволила повысить внешний квантовый выход готовых светодиодов до 60%.

Профессор Раскин из Бельгии (Université catholique de Louvain ) представил другое мейнстримное направление в микроэлектронике, а именно, усовершенствование технологии КНИ (Кремний-На-Изоляторе). Саму технологию КНИ, когда в качестве подложки для формирования транзисторов используют не толстый слой кремния, а сэндвич, в котором слой оксида изолирует технологический слой кремния от остальной части подложки, считают перспективным направлением для миниатюризации микропроцессоров. Профессор Раскин предложил добавить в «сэдвич» еще один слой, насыщенный упорядоченными дефектами в поликристаллическом кремнии. Такое усовершенствование принципиальным образом улучшает характеристики создаваемых на подложке устройств. Во французской компании, которая серийно производит подложки на основе КИН-технологии, считают, что технология профессора Раскина в самое ближайшее время станет основной в производстве электронных «мозгов» для всех персональных гаджетов. Кроме этого у технологии также много узкоспециальных применений.

Интересные разработки предложены в таком направлении как нанолитография. Традиционно в микроэлектронике используют светочувствительный полимер, который наносят на поверхность и нужные области засвечивают через специальный трафарет. Эта технология имеет ограничения по пространственному разрешению – оно ограничено пределом диффракции света. В заявке коллектива авторов из Швеции предложен способ нанесения определенного рисунка на поверхность методом импринтинга, аналогично тому, как печать с краской прикладывают к бумаге и оставляют отпечаток на документах. Этот подход ученые пытались применить уже давно, но мешал целый ряд серьезных препятствий – с высоким разрешением можно было оставлять всего несколько отпечатком, поле печати было небольшим (порядка 30 микрон), из-за этого весь процесс становился слишком долгим. Предложенная технология позволяет преодолеть эти ограничения. Так подложка 6 дюймов может быть обработана всего за несколько минут.

Формирование наноструктур: стружки для шапки-невидимки.

Профессор Уайтсайдс (Harvard University, США) представил целый ряд подходов для формирования локальных элементов рельефа, самый оригинальный из которых он назвал «наноскайвинг» (от англ. skive – срезать тонкий слой, снимать стружку). Технология поражает воображение своей простотой и дешевизной, с одной стороны, и огромным потенциалом возможностей – с другой.

Суть подхода состоит в том, что некоторый регулярный рельеф создается на поверхности твердого полимера с субмикронным разрешением. Это сейчас просто сделать с помощью оптических и лазерных технологий. Потом на поверхность полимера с рельефом напыляется металлическая пленка толщиной около 30 нм. Сверху наносится слой эпоксидной смолы, а затем, с помощью ультрамикротома получается тонкий срез в произвольной плоскости. Толщина среза лимитируется возможностями ультрамикротома и в современных приборах может доходить до 30 нм.

Предположим, срез прошел в плоскости, перпендикулярной средней плоскости напыления пленки металла. В этом случае исследователь получает листок из полимерного материала (срез) с шириной и длиной до нескольких миллиметров, в котором есть «ниточка» - слой металлической пленки, повторяющей некий регулярный рельеф исходного полимера. Характерные размеры такой структуры – десятки нанометров в диаметре и до миллиметров в длину. Укладывая слои на определенной подложке, из таких «ниточек» можно пинцетом, под оптическим микроскопом формировать пространственные трехмерные структуры. После обработки в плазменной камере полимеры счищаются, а металлические структуры – остаются.

Таким образом, данный подход совмещает:

- топологический контроль до 30 нм по двум из трех измерений;

- возможность создавать из наноструктур макрообъекты (характерные размеры – мм);

- предельно простое оборудование и инфраструктура (нет необходимости в чистых комнатах, высоком вакууме и прочем).

Наиболее востребованной такая технология может оказаться у разработчиков метаматериалов (например, для придания объектам свойства невидимости в оптическом диапазоне). Именно там важно иметь возможность одновременно контролировать характеристики материала и на уровне нанометров и на макроуровне. Однако вопросы промышленной технологичности, очевидно, еще предстоит прорабатывать.

Оборудование для наноэлектроники и не только

Две широко известные технологии, применяемые в полупроводниковой промышленности, номинированы на Премию RUSNANOPRIZE 2013 в виде разработок научного и малосерийного промышленного оборудования. Это так называемые технологии ALD(atomic layer deposition – атомно-слоевое осаждение, заявка подана финской компанией) и MOCVD (газофазное осаждение металлоорганических соединений, заявка подана немецкой компанией). Обе технологии обеспечивают наращивание тонких слоев определенного состава на поверхности кремниевой подложки.

В случае ALD рост новой структуры происходит за счет пристраивания молекул или атомов по краю уже существующей пленки. Поэтому пленка получается очень тонкой, вплоть до одного слоя атомов, и очень равномерной и по толщине и по составу.

В случае MOCVD металлоорганическое соединение в газообразном виде поступает в реакционную камеру, оседает на поверхность подложки, а затем атомы металла высвобождаются с помощью химических реагентов либо термического разложения органики. Эта технология дает широкие возможности для выбора материалов и является одной из базовых в современной микроэлектронике.

Наконец, весьма перспективное направление для исследования наноструктур разрабатывается на уровне оборудования российской компанией. Так называемая сканирующая зондовая микроскопия (СЗМ)основана на двух технологических решениях.

Во-первых, очень острую иглу (радиус закругления на острие до 1 нм) можно подвести очень близко к поверхности и регистрировать силы, между острием и областью поверхности размером несколько нанометров. Силы могут быть самые разные, в зависимости от материала и свойств иглы, а также свойств самой поверхности. В самом простом случае игла притягивается или отталкивается за счет ван-дер-ваальсовых сил, но могут быть и магнитные, электрические, адгезионные и другие взаимодействия.

Во-вторых, специальная сканирующая система позволяет двигать иглу по поверхности с ангстремной точностью. Т.е. игла ощупывает поверхность, перемещаясь от точки к точке, и исследователь получает карту распределения интересующих его свойств по выбранному участку поверхности образца. Например, это может быть просто рельеф – размеры наноструктур.

Возможность измерять электрические и магнитные характеристики с нанометровым разрешением делает СЗМ весьма востребованным подходом в разработке новых полупроводниковых материалов и наноэлектронных устройств.


В статье использованы материалы: НОР




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Полусфера
Полусфера

NT-MDT SI на сентябрьских конференциях.
На предстоящей неделе компания NT-MDT Spectrum Instruments будет сразу на трёх конференциях в Томске, Рязани и Йорке.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Чтобы лечебные наночастицы проникли в мозг, их достаточно понюхать…Влияние растяжения графена на процессы адсорбции радикалов. Кто нам мешает – тот нам поможет: магнитные наводки в обработке … изображений. Об увеличении мощности генерации РТД в терагерцовом диапазоне. Что общего у говора и капли? Поверхностное натяжение!

NT-MDT Spectrum Instruments – СЗМ-2017
Группа компания NT-MDT Spectrum Instruments на конференции СЗМ-2017 в Екатеринбурге.

Научно-исследовательская работа студентов в 7 семестре. Тезисы докладов на студенческой научной конференции.
Сафронова Т.В.
Научные конференции студентов на факультете наук о материалах Московского государственного университета имени М.В. Ломоносова (ФНМ МГУ) – являются многолетней традицией. Зимняя конференция в 7 семестре - как контрольная точка для студентов, неотрывно от учебного процесса выполняющих квалификационную работу бакалавра.

Система практик ФНМ МГУ
А.Б.Тарасов, А.В.Кнотько, Е.А.Гудилин

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!

Проектная работа

Сегодня становится все более популярной так называемая проектная работа школьников, однако на этот счет есть очень разные мнения. Мы были бы признательны, если бы Вы высказали кратко свое мнение по этому поводу путем голосования. Заранее благодарны!

Закон о реформировании РАН

В Совместном заявлении Совета по науке и членов Общественного совета Минобрнауки предлагается отозвать нынешний проект закона о "реформировании" РАН из Государственной думы и вернуться к его рассмотрению с соблюдением процедуры утвержденной постановлением Правительства РФ №851 от 25.08.2012, и указом Президента РФ №601 от 07.05.2012, которая была грубо нарушена. Мы предлагаем Вам высказать (анонимно) свое мнение в данном опросе, чтобы его статистические результаты были видны всем участникам опроса и общественности.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.