Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Парад нанотехнологий: наноэлектроника и оборудование. Часть 3

Ключевые слова:  RUSNANOPRIZE 2013, Наноструктуры, Наноэлектроника, Научное оборудование, периодика, Технологии

Автор(ы): Денис Андреюк

Опубликовал(а):  Доронин Федор Александрович

29 сентября 2013

Наноэлектроника и оборудование

Продолжаем серию статей с кратким обзором технологий, номинированных на получение международной премии в области нанотехнологий RUSNANOPRIZE 2013. В этой части рассмотрим технологии по двум направлениям:

- микро- и наноэлектроника

- научное и технологическое оборудование для формирования и изучения наноструктур

Полупроводники: традиционные подходы, новые достижения

Одно из быстроразвивающихся направлений в полупроводниковой промышленности – это технологии для светодиодного освещения. Коллектив российских ученых предложил решение серьезной проблемы на пути повышения эффективности светодиодов, а именно, проблемы выхода фотонов из активной области светогенерации. Была теоретически обоснована, экспериментально подтверждена и реализована в промышленном варианте технология создания наноразмерных рельефных структур на сапфировой подложке для светодиодов на основе множественных квантовых ям InAlGaN/GaN. Кроме этого, структура самой активной области была оптимизирована. В результате удалось существенно снизить вклад безызлучательных процессов и уменьшить потери за счет внутреннего отражения фотонов в активной области. Суммарно технология позволила повысить внешний квантовый выход готовых светодиодов до 60%.

Профессор Раскин из Бельгии (Université catholique de Louvain ) представил другое мейнстримное направление в микроэлектронике, а именно, усовершенствование технологии КНИ (Кремний-На-Изоляторе). Саму технологию КНИ, когда в качестве подложки для формирования транзисторов используют не толстый слой кремния, а сэндвич, в котором слой оксида изолирует технологический слой кремния от остальной части подложки, считают перспективным направлением для миниатюризации микропроцессоров. Профессор Раскин предложил добавить в «сэдвич» еще один слой, насыщенный упорядоченными дефектами в поликристаллическом кремнии. Такое усовершенствование принципиальным образом улучшает характеристики создаваемых на подложке устройств. Во французской компании, которая серийно производит подложки на основе КИН-технологии, считают, что технология профессора Раскина в самое ближайшее время станет основной в производстве электронных «мозгов» для всех персональных гаджетов. Кроме этого у технологии также много узкоспециальных применений.

Интересные разработки предложены в таком направлении как нанолитография. Традиционно в микроэлектронике используют светочувствительный полимер, который наносят на поверхность и нужные области засвечивают через специальный трафарет. Эта технология имеет ограничения по пространственному разрешению – оно ограничено пределом диффракции света. В заявке коллектива авторов из Швеции предложен способ нанесения определенного рисунка на поверхность методом импринтинга, аналогично тому, как печать с краской прикладывают к бумаге и оставляют отпечаток на документах. Этот подход ученые пытались применить уже давно, но мешал целый ряд серьезных препятствий – с высоким разрешением можно было оставлять всего несколько отпечатком, поле печати было небольшим (порядка 30 микрон), из-за этого весь процесс становился слишком долгим. Предложенная технология позволяет преодолеть эти ограничения. Так подложка 6 дюймов может быть обработана всего за несколько минут.

Формирование наноструктур: стружки для шапки-невидимки.

Профессор Уайтсайдс (Harvard University, США) представил целый ряд подходов для формирования локальных элементов рельефа, самый оригинальный из которых он назвал «наноскайвинг» (от англ. skive – срезать тонкий слой, снимать стружку). Технология поражает воображение своей простотой и дешевизной, с одной стороны, и огромным потенциалом возможностей – с другой.

Суть подхода состоит в том, что некоторый регулярный рельеф создается на поверхности твердого полимера с субмикронным разрешением. Это сейчас просто сделать с помощью оптических и лазерных технологий. Потом на поверхность полимера с рельефом напыляется металлическая пленка толщиной около 30 нм. Сверху наносится слой эпоксидной смолы, а затем, с помощью ультрамикротома получается тонкий срез в произвольной плоскости. Толщина среза лимитируется возможностями ультрамикротома и в современных приборах может доходить до 30 нм.

Предположим, срез прошел в плоскости, перпендикулярной средней плоскости напыления пленки металла. В этом случае исследователь получает листок из полимерного материала (срез) с шириной и длиной до нескольких миллиметров, в котором есть «ниточка» - слой металлической пленки, повторяющей некий регулярный рельеф исходного полимера. Характерные размеры такой структуры – десятки нанометров в диаметре и до миллиметров в длину. Укладывая слои на определенной подложке, из таких «ниточек» можно пинцетом, под оптическим микроскопом формировать пространственные трехмерные структуры. После обработки в плазменной камере полимеры счищаются, а металлические структуры – остаются.

Таким образом, данный подход совмещает:

- топологический контроль до 30 нм по двум из трех измерений;

- возможность создавать из наноструктур макрообъекты (характерные размеры – мм);

- предельно простое оборудование и инфраструктура (нет необходимости в чистых комнатах, высоком вакууме и прочем).

Наиболее востребованной такая технология может оказаться у разработчиков метаматериалов (например, для придания объектам свойства невидимости в оптическом диапазоне). Именно там важно иметь возможность одновременно контролировать характеристики материала и на уровне нанометров и на макроуровне. Однако вопросы промышленной технологичности, очевидно, еще предстоит прорабатывать.

Оборудование для наноэлектроники и не только

Две широко известные технологии, применяемые в полупроводниковой промышленности, номинированы на Премию RUSNANOPRIZE 2013 в виде разработок научного и малосерийного промышленного оборудования. Это так называемые технологии ALD(atomic layer deposition – атомно-слоевое осаждение, заявка подана финской компанией) и MOCVD (газофазное осаждение металлоорганических соединений, заявка подана немецкой компанией). Обе технологии обеспечивают наращивание тонких слоев определенного состава на поверхности кремниевой подложки.

В случае ALD рост новой структуры происходит за счет пристраивания молекул или атомов по краю уже существующей пленки. Поэтому пленка получается очень тонкой, вплоть до одного слоя атомов, и очень равномерной и по толщине и по составу.

В случае MOCVD металлоорганическое соединение в газообразном виде поступает в реакционную камеру, оседает на поверхность подложки, а затем атомы металла высвобождаются с помощью химических реагентов либо термического разложения органики. Эта технология дает широкие возможности для выбора материалов и является одной из базовых в современной микроэлектронике.

Наконец, весьма перспективное направление для исследования наноструктур разрабатывается на уровне оборудования российской компанией. Так называемая сканирующая зондовая микроскопия (СЗМ)основана на двух технологических решениях.

Во-первых, очень острую иглу (радиус закругления на острие до 1 нм) можно подвести очень близко к поверхности и регистрировать силы, между острием и областью поверхности размером несколько нанометров. Силы могут быть самые разные, в зависимости от материала и свойств иглы, а также свойств самой поверхности. В самом простом случае игла притягивается или отталкивается за счет ван-дер-ваальсовых сил, но могут быть и магнитные, электрические, адгезионные и другие взаимодействия.

Во-вторых, специальная сканирующая система позволяет двигать иглу по поверхности с ангстремной точностью. Т.е. игла ощупывает поверхность, перемещаясь от точки к точке, и исследователь получает карту распределения интересующих его свойств по выбранному участку поверхности образца. Например, это может быть просто рельеф – размеры наноструктур.

Возможность измерять электрические и магнитные характеристики с нанометровым разрешением делает СЗМ весьма востребованным подходом в разработке новых полупроводниковых материалов и наноэлектронных устройств.


В статье использованы материалы: НОР




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Агломерат частиц порошка Al(OH)3
Агломерат частиц порошка Al(OH)3

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.