Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

RUSNANOPRIZE 2013: алмазы российских нанотехнологий

Ключевые слова:  RUSNANOPRIZE, Алмазы, Конкурс, РОСНАНО, Углерод

Автор(ы): Денис Андреюк

Опубликовал(а):  Доронин Федор Александрович

26 июля 2013

Вот уже почти два месяца идет прием заявок на премию для ученых, внедряющих нанотехнологии в промышленное производство. Как выясняется, российским ученым есть, что показать на этом престижном конкурсе. В этой статье рассказывается про два направления технологий, связанных с алмазной формой углерода.

Конкурс – это всегда состязание, премию RUSNANOPRIZE за достижения в области нанотехнологий получит только один человек или коллектив ученых. Имена трех лучших претендентов (short-list) будут названы в конце сентября, а собственно победитель будет определен решением Комитета Премии в октябре. Однако процесс подготовки к конкурсу тоже интересен: он позволяет увидеть целый спектр достижений, которые при обычных условиях остаются неизвестными.

Нанотехнологическое общество России содействует организаторам Премии в части привлечения потенциальных номинантов. В ходе этой работы становится очевидно, что в России, действительно, есть очень серьезные наработки практически во всех направлениях создания наноматериалов и модификации поверхности (именно так обозначена тематика Премии в этом году). Многие российские научные центры в связке с производственными предприятиями уже представили в Дирекцию Премии заявки, которые полностью конкурентоспособны на мировом уровне. Больше того, темы некоторых работ позволяют обнаружить новые тренды в мировом технологическом развитии. Приведу здесь два направления, которые лично мне показались весьма перспективными и востребованными, как международной наукой, так и международной промышленностью.

Маленькие алмазы с большими возможностями

Еще лет 15 назад большим прорывом считали саму возможность получения ультрадисперсных алмазов детонационным методом. Это оказалось в самом деле очень просто и относительно дешево: в специальную камеру помещают взрывчатку (например, из подлежащих утилизации боеприпасов), подрывают ее и при определенных условиях в полученной шихте содержится до 70% углерода в форме алмаза в виде наночастиц размером около 5 нм.

Интерес к наноалмазам со стороны ученых связан с большим потенциалом практического использования. Вот лишь несколько областей, где эффекты могут быть особенно заметны:

- Присадки к смазочным материалам: будучи диспергированы в масле наноалмазы создают особый слой на поверхности трущихся деталей. Во-первых, они диффундируют на несколько микрон вглубь металла, делая саму поверхность более твердой, во-вторых, они заполняют микронеровности, и, наконец, в-третьих, агрегаты из алмазных наночастиц выступают в роли микроподшипников – маленьких и очень твердых шариков, которые катятся по поверхности и уменьшают трение. В результате присадки с наноалмазами увеличивают ресурс, скажем, автомобильного двигателя до 50%.

- Модификаторы для электрохимических покрытий: в большинстве электролитных растворов наночастицы алмаза заряжены, а значит, могут взаимодействовать с ионами и участвовать в процессе электрохимического осаждения. При определенных условиях соосаждение металлов с наноалмазами делает покрытие существенно более прочным и устойчивым к коррозии.

- Основа для доставки низкомолекулярных соединений в живые клетки. Наноалмазы в силу своего размера способны проникать сквозь барьер клеточной мембраны, однако их распределение неодинаково в разных типах клеток. В частности, опухолевые клетки их накапливают. Если к поверхности частицы пришить цитотоксические молекулы, то такой «пакет» становится эффективным и нетоксичным для всего организма противоопухолевым препаратом.

Сегодня острие разработок направлено на то, чтобы наноалмазные частицы выделить в максимально чистом виде, а также на то, чтобы модифицировать их поверхность, для придания им промышленно ценных качеств. Как оказалось, одним из самых передовых в этом направлении (в мире!) сегодня считается научный центр в Санкт-Петербурге, с производственной площадкой ФГУП СКТБ «Технолог». Примерно год назад большая статья про экономические аспекты технологии наноалмазов питерского центра была напечатана в журнале «Эксперт». К этому можно добавить, что в рамках международного сотрудничества (в частности, с Международным Технологическим Центром г. Релей, США) ведется работа по разработке и коммерциализации новейших технологий модификации поверхности наноалмазов, прежде всего, для биомедицинских применений.

Синтетические алмазы – лучшие друзья… физиков

В Троицком институте сверхтвердых и новых углеродных материалов (ТИСНУМ) дальше всех других мировых центров продвинулись в технологиях роста искусственных кристаллов углерода в форме алмаза. Причем искусственные алмазы принципиально отличаются от своих природных аналогов, в синтетических кристаллах удается контролировать содержание примесей и дефектов на атомарном уровне. В том числе, кристаллы могут быть практически бездефектными.

Именно бездефектность синтетических алмазов и контроль параметров изготавливаемых из них пластин позволили создать Брэгговские зеркала для рентгеновского излучения с коэффициентом отражения 98-99%. Такие зеркала, например, были использованы в экспериментах, проведенных в Национальной ускорительной лабораторией SLAC США с лазером на свободных электронах XFEL (X-ray free-electron laser). Благодаря уникальным характеристикам алмазных зеркал, были получены беспрецедентные результаты по таким параметрам, как сужение лазерной линии и монохроматичность излучения. Это, в свою очередь, открывает новые возможности для томографических исследований на атомарном уровне, т.е. даст новые знания о строении биологических молекул и искусственных наноструктур.

Другое направление использования синтетических алмазов – микроэлектроника. Алмазные подложки для многих промышленно важных применений позволяют обойти ограничения, которые возникают на традиционных подложках из кремния или сапфира. Например, благодаря высокой теплопроводности алмаза, можно создавать уникальные по характеристикам высокотемпературные диоды Шоттки и устройства на их основе. Для микро- и наноэлектронники полезной оказывается возможность строго контролируемо привносить примеси в структуру алмаза.

Наконец, традиционное применение алмаза – для измерения твердости других материалов – в ТИСНУМ вывели на новый технологический уровень. Алмазная пирамидка, закрепленная на специальном зондовом датчике и соединенная с механизмом для прецизионного сканирования – таково простейшее описание схемы сканирующего нанотвердомера. Прибор под торговой маркой НаноСкан-3D позволяет картировать твердость поверхности с разрешением до нескольких нанометров, а также изучать характеристики трения и свойства тонких пленок. Тоже в масштабе нанометров. Прибор конкурентоспособен с лучшими мировыми аналогами и его преимуществами уже воспользовались многие зарубежные лаборатории.

Tobecontinued

Прием заявок на премию RUSNANOPRIZE 2013 продолжается, а это значит, что смотр отечественных технологий и примеров их успешного внедрения тоже можно будет продолжить. На официальном сайте Премии www.rusnanoprize.ru можно найти условия участия, а на электронный адрес Нанотехнологического общества России orgnanosociety@mail.ru можно присылать предложения по кандидатам. Мы все заинтересованы, чтобы в конкурсе приняло участие как можно больше сильных заявок. Тогда и победа лауреата будет более значимой, и мы будем больше знать об успешных научных коллективах в России, которые создают новые технологии и внедряют их в промышленное производство.


В статье использованы материалы: НОР


Средний балл: 10.0 (голосов 2)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нобелевской премии по химии 2011 посвящается
Нобелевской премии по химии 2011 посвящается

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.