Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Компания НТ–МДТ представила новейшую разработку - уникальную АСМ методику HybriD Mode

Ключевые слова:  EMRS, HD-AFM Mode, HybriD Mode, Конференции, НТ-МДТ, Сканирование, Характеристики

Опубликовал(а):  Доронин Федор Александрович

14 июня 2013

На конференции EMRS в Страсбурге компания НТ–МДТ представила новейшую разработку - уникальную АСМ методику HybriD Mode (HD-AFM Mode), позволяющую за одно сканирование получать целый комплекс морфологических, механических, электрофизических, магнитных и др. характеристик.


Главной особенностью инновационной АСМ методики HybriD Mode™ (HD-AFM™) является получение комплексной информации об объекте исследования за один цикл измерений, при этом практически устраняется паразитное действие латеральных сил и поддерживается высокая стабильность при длительных измерениях.


a)


b)

На графиках изображены: (а) осциллограммы силы и траектории зонда, (б) зависимость силы от расстояния.

В процессе измерений с использованием HybriD Mode™ расстояние зонд-образец модулируется по квазигармоническому закону, причем зонд периодически (тысячи раз в секунду) проходит весь диапазон значимых силовых взаимодействий – от нулевого до прямого контактного взаимодействия с образцом. В процессе измерений на силовых кривых отражается весь спектр взаимодействий – от дальнодействующих электрических и магнитных до контактных, вызывающих упругие и даже пластические деформации поверхности. Анализ измеряемых силовых кривых позволяет получать распределение широкого спектра морфологических, механических, химических, электрических, магнитных и других характеристик образца с высоким пространственным разрешением.

Возможности HybriD Mode™ обусловлены реализацией уникальных математических алгоритмов и использованием в HD контроллере самой современной электронной базы. Благодаря наличию этих компонентов, обработка сигналов и их анализ производится в режиме реального времени с высочайшей точностью.

Расширение возможностей атомно-силовой микроскопии с применением методики HybriD Mode
С.Н. Магонов (6.61 Mb)

New HD-AFM Mode; Your Path to Controlling Forces for Precise Material Properties - Архив вебинара


Комплексное исследование нанокомпозитных материалов

Методика HybriD Mode™ основана на прямом измерении силового взаимодействия зонда с образцом в режиме реального времени (в каждой точке), что позволяет получать информацию о физических и химических свойствах поверхности образца напрямую. Это невозможно в традиционных методах АСМ, таких как, например, отображение фазового контраста и метод силовой модуляции. Возможность прямых комплексных измерений крайне полезна при изучении нанокомпозитных материалов, таких, в частности, как смеси полимеров.

На рисунке справа приведен пример композиционного 3D изображения, на котором представлены островки полистирола в полиэтиленовой матрице. Цвет областей соответствует полиэтилену (16 МПа, синий) и полистиролу (3 ГПа, зелёный). Из представленных данных хорошо видно, что на вершинах «жестких» сфер полистирола находятся «мягкие» бляшки полиэтилена, что вызвано термическим способом приготовления образца.

Островки полистирола в матрице полиэтилена.
Размер скана 3×3 мкм

Измерение электрических свойств

Углеродные нанотрубки на кремнии. (а) рельеф, (b) ток растекания, (c) модуль упругости.

Образец предоставлен лабораторией д-ра Кульянишвили (Dr. Kuljanishvili) физического факультета университета Сент-Луиса, США

Из-за слабого закрепления на поверхности подложки свободно лежащих объектов, таких как нанотрубки, изучение их проводящих свойств классическими методами АСМ представляет собой крайне непростую задачу. Использование метода HybriD Mode™ позволяет исключить латеральные силы взаимодействия зонд-образец, что значительно упрощает процесс измерений. Сопоставление электрической и механической карт распределения позволяет однозначно выделить одиночные нанотрубки и их пучки.

Применение в биологии
Уникальной особенностью HybriD Mode™ является возможность проводить длительные эксперименты в жидкой среде при минимальных силах воздействия на образец за счет контроля нулевого уровня силы. При этом отпадает необходимость поиска резонансной частоты кантилевера. Дополнительные данные о механических свойствах объектов позволяют значительно расширить информативность проводимых измерений. На композиционном изображении фрагмента стволовой клетки, представленной справа, четко различим цитоскелет. Диапазон модуля упругости клетки: 0,2-1,5 кПа.


Фрагмент стволовой клетки в жидкости. (а) рельеф, (b) модуль упругости


Предельное разрешение по силе

Сплав висмут-олово. (а) рельеф, (b) модуль упругости, (c) поверхностный потенциал.

Диапазон модулей упругости материалов, доступных для наномеханического анализа при помощи стандартного зондового датчика АСМ (кремниевого кантилевера), как правило, ограничен ~10 ГПа. В данном примере приведен уникальный результат измерения модуля упругости металлического сплава. На изображении четко различимы фазы, соответствующие Bi (38 ГПа) и Sn (50 ГПа). Карта распределения модуля упругости хорошо согласуется с распределением поверхностного потенциала металлов. Возможность получения подобных результатов обусловлена использованием оригинальных алгоритмов обработки сигналов и уникально низким уровнем шумов микроскопа.


Источник: НТ-МДТ



Комментарии

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

"Один в поле не воин"
"Один в поле не воин"

NAUKA 0+ Фестиваль науки в Москве
8-10 октября в Москве проходит Фестиваль науки NAUKA 0+. В этом году фестиваль соберёт учёных со всех шести континентов нашей планеты, лучших исследователей из России, лауреатов государственных премий, молодых учёных, и, конечно, лауреатов Нобелевской премии.

Названы лауреаты Нобелевской премии по химии
Нобелевскую премию по химии за 2021 год присудили Бенджамину Листу и Дэвиду Макмиллану за разработку методов асимметричного органокатализа

Названы лауреаты Нобелевской премии по физике
Нобелевскую премию по физике за 2021 год присудили трем ученым — Сюкуро Манабе, Клаусу Хассельману и Джорджио Паризи.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2021
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 8, 9, 10 и 11 июня 2021 г. Начало защит в 11.00. Защиты пройдут с использованием дистанционных образовательных технологий.

Академик Е.Н. Каблов: «Для освоения космоса нужны новые материалы»
Янина Хужина
В этом году весь мир отмечает 60-летие первого полета человека в космос. Успех миссии Юрия Гагарина стал возможен благодаря слаженной работе многих людей: физиков, математиков, конструкторов, инженеров-проектировщиков и, конечно, материаловедов. «Научная Россия» обсудила с академиком РАН Евгением Кабловым основные вехи в развитии космического и авиационного материаловедения.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2021 году
коллектив авторов
25 - 28 мая пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.