Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Схема работы органической солнечной батари
Схема работы ячейки Гретцеля
Схема работы солнечной батарея с промежуточной зоной
В Бельгии почти нет солнца, зато на каждой яхте - по солнейной батарейке.

Солнечные батарейки - в каждый дом!

Ключевые слова:  DSSC, osc, периодика

Автор(ы): Уточникова Валентина Владимировна

Опубликовал(а):  Уточникова Валентина Владимировна

05 апреля 2012

Предстоящее истощение ископаемых видов топлива диктует растущий спрос в области восполняемой энергетики, а недавняя трагедия в Японии заставляет отказаться от ядерного топлива и сосредоточиться именно на энергии солнечного света. Органические фотоэлементы, особенно на основе полимеров, привлекают в последние годы большое внимание благодаря низкой стоимости, потенциально высокой мощности и эффективности преобразования энергии. К настоящему моменту КПД полимерных солнечных ячеек, основанных на системе полимер-фуллерен, приближается к 10%. Производные фуллерена сегодня являются основным типом молекул n-типа для полимерных солнечных элементов благодаря их высокой электроотрицательности и высокой подвижности электронов.

Еще одна интересная разработка в области солнечных батарей – это сенсибилизированные красителем солнечные элементы, или ячейки Гретцеля, как их принято называть в русскоязычной литературе по имени их создателя, проф. Гретцеля из EPFL, Швейцария. В этих ячейках функции поглощения света, транспорта электрона и транспорта дырок выполняются отдельными материалами. Ячейки Гретцеля используют энергию окислительно-восстановительных реакций, и, используя этот подход, ученые смогли увеличить эффективность преобразования света до 11%, а сегодня, заменяя красители и red-ox систему, появляются реальные перспективы в скором времени достичь эффективности преобразования энергии более чем до 15%.

В 2004 году был продемонстрирован новый класс солнечных элементов – солнечные элементы с промежуточной зоной. Эти ячейки состоят из материала с промежуточной зоной, заключенного между двумя обычными материалами n- и р-типа. Фотоны с энергией меньше, чем зазор между зоной проводимости и валентной зоной, могут быть поглощены в два этапа: сначала между валентной зоной и промежуточной зоной, а затем между промежуточной зоной и зоной проводимости. Исследователи в этой области ожидают, что объемные солнечные батареи с промежуточной зоной могут повысить мощность преобразования энергии современных тонкопленочных солнечных батарей.

Важным свойством солнечных батарей является поглощение света, рост которого приводит и к росту производимой энергии. Поглощение света может быть улучшено за счет использования более толстого слоя материала для увеличения длины оптического пути, но это противоречит всем усилиям по снижению стоимости модулей солнечных батарей за счет уменьшения толщины ячейки. Ответом на этот компромисс могут стать поверхностные плазмоны: направление их распространения - вдоль поверхности металл-диэлектрик и, следовательно, не зависит от толщины ячейки. Ученые отмечают, что при должном формировании и упорядочении металлических наночастиц можно очень эффективно повысить производительность фотоэлементов.

Другой способ добиться эффективного поглощения света – это более грамотный сбор ячейки. Недавний прогресс в развитии солнечных элементов на основе коллоидных квантовых точек, диаметр которых можно непрерывно менять, показал, что при грамотном подборе можно получить набор квантовых точек, поглощающий свет во всем солнечном спектре.

Чтобы захватить также и УФ излучения, в солнечные батарейки можно ввести дополнительные переизлучающие слои: эти материалы будут поглощать свет в УФ диапазоне и излучать видимый свет, который будет поглощаться ячейкой. Использование up-конвертеров позволяет также переизлучать поглощаемый свет в ИК диапазоне в видимую область.

А что же с более развитыми кремниевыми солнечными батарейками? Стюартом Венхам, технический директор компании Suntech, одного из крупнейших мировых производителей кремниевых солнечных панелей, утверждает, что Suntech в своих коммерческих кремниевых солнечных элементах недавно достигли эффективности преобразования энергии до 20,3%. Для производителей солнечных ячеек основной задачей является снижение затрат, и Венхам указывает, что это может быть достигнуто как за счет повышения эффективности преобразования энергии, так и сокращения затрат производства. Как только стоимость солнечной энергии упадет ниже стоимости ископаемой энергии, этот рынок действительно сильно вырастет.

По прогнозам специалистов к концу этого столетия мировое энергопотребление вырастет более чем в четыре раза. Несмотря на быстрый прогресс в исследовании фотоэлектронных устройств, основной задачей в настоящее время является разработка методов хранения энергии, собранной в течение дня, для ее использования в ночное время. Только при решении этой проблемы солнечная энергетика сможет достаточно быстро расти, чтобы занять место основного поставщика восполняемой энергии.



Средний балл: 9.4 (голосов 7)

 


Комментарии
Интересно, а сколько эти полимерные солнечные батарейки стоят или же будут стоить, хотя бы в сравнении с кремниевыми. Можно даже сравнить стоимость 1 Вт энергии.
вот их стоимость в сравнении с кремнием как раз называется их основным преимуществом, ничто не сравнится с кремниевым монокристаллом :)
А вот стоимость 1Вт уже после установки пока дороже намного из-за низкой по ср с кремнием эффективности...
А другие публикации где-нибудь можно найти?
О солнечной энергетике вообще?
Готовится серия.
Палии Наталия Алексеевна, 14 апреля 2012 21:18 
Солнечные батарейки - в каждый дом- пока только на улице, возле домов - В Москве появились светофоры на солнечных батареях
на севере солнце не очень балует, фонарики возле домов не светят и 2 часов. Флип-флоп-вот что работает)) абсолютно ненужный предмет интерьера каждого второго автомобиля
Палии Наталия Алексеевна, 26 апреля 2012 13:56 
На сколько я знаю в Турции, используют солнечные батареи для нагрева воды. Очень выгодно. Статья на 10-)

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

"Карбон"
"Карбон"

Интервью с участниками, авторами задач и организаторами XIII Олимпиады
Предлагаем ознакомиться с подборкой видеороликов - миниинтервью, взятых в течение очного тура XIII Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!" (25 - 30 марта 2019 года).

Неделя Олега Лосева
Портал RSCI.RU и инициаторы проведения "Недель Олега Лосева" приглашают все вузы и факультеты физико-технологического и радиоэлектронного профиля к участию в первой Неделе Олега Лосева в Рунете, посвященной Олегу Владимировичу Лосеву - признанному пионеру полупроводниковой электроники и оптоэлектроники.

Магистратура Московского университета по химической технологии
Химический факультет МГУ имени М.В.Ломоносова объявляет о приеме в магистратуру "Химическая технология" для подготовки специалистов в области полимерных композиционных материалов, углеродных материалов, защитных покрытий.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.