Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. Структура кристаллического диоксида кремния (а) и аморфного (b). Микрофотографии "кристаллического" (с) и аморфного (d) участков, полученные с помощью сканирующего просвечивающего темнопольного микроскопа с кольцевым детектором, а также соответствующее им быстрое преобразование Фурье (e,f)
Рисунок 2. Карты характеристических потерь энергии электронами (а-с, e-g) и соответствующая темнопольная микрофотография (d). Схематическое изображение аморфной структуры
Рисунок 3. Схематическое изображение аморфной структуры сверху (а) и сбоку (b)

Аморфный диоксид кремния стал двумерным

Ключевые слова:  графен, двумерное стекло

Опубликовал(а):  Шуваев Сергей Викторович

11 февраля 2012

В последние десятилетия ученым удалось получить целый ряд двумерных материалов, например, графен, двумерный сульфид молибдена и нитрид бора - все эти материалы обладают упорядоченной "кристаллической" структурой. Однако особый интерес для ученых представляет получение аморфных двумерных материалов. Во-первых, с теоретической точки зрения, получение одномерной аморфной структуры интересно для определения структуры аморфных материалов в целом методами просвечивающей электронной микроскопии (с последующим обобщением на случай трехмерной структуры). Во-вторых, такие материалы представляют особый интерес для перспективной микроэлектроники.

Как это часто бывает, многие научные открытия происходят неожиданно. Столь же неожиданно международному коллективу ученых удалось получить одномерный слой аморфного диоксида кремния на поверхности графена, когда получали последний методом CVD (напыление из газовой фазы) на медной подложке (по всей видимости, из-за загрязнения реактора).

Структура полученного материала варьируется от преимущественно "кристаллической" до аморфной, что вкупе с существенным несоответствием между параметром "решетки" графена и диоскида кремния свидетельствует о нековалентном связывании между графеновой подложкой и SiO2. Однако точную структуру полученного слоя авторам статьи удалось получить только с использованием спектроскопии характеристических потерь энергии электронами. Оказалось, что полученный слой построен из битетраэдров (тетраэдров, соединенных вершинами), которые соединены в кольца Si-O-Si-...-O-Si различного размера (от 3 до 10 тетраэдров в кольце). Таким образом, данный материал уникален еще и тем, что фактически является аморфным в двух измерениях (вдоль подложки) и упорядоченным в другом (перпендикулярно подложке).


Источник: Nano Letters



Комментарии
воистину уникально! То есть разная фаза, смотря как посмотреть, очень необычно.
Да и по поводу "по всей видимости, из-за загрязнения реактора" - погорячились. Для ГФО покрытий за частую необходим глубокий вакуум, до 10^-6 (а то и восьмизначная "глубина"), а для таких грандиозных целей используют разного рода вакуумные насосы (скажем турбомолекулярный), причем они включаются после форвакуумной откачки. А ведь даже после форвакуума останутся от примесей (ну хотя бы летучих) в реакторе рожки да ножки, не факт конечно, что на линию всаса попадут более тяжелые частица (которые прижаты силами мира сего), но ведь они сделали все чинно - взяли подложку и осаждали на нее. Иными словами - что-то тут не чистое, будто неряшливо эксперимент поставили, но с этого они сняли много-много сливок :)
Если фор был безмаслянным, правильно был выдержан Регламент ЧПП, работы собственно с установкой то дело не в загрязнениях. Это у нас любя врубать брызгающий маслом фор, затем турбик и наконец собционные и бороться за звание высоковакуумной установки убивая геттер (титан). Приходилось видеть и маслянные. Это вообще нонсенс!
TSP также часто используют избыточной мощности чем если бы грамотно все операции продумывали. А вариановские насосы дешёвыми не бывают, особенно утекание денег проекта заметно если камера промышленная, на кубометры.
Готовый почти материал для сверхплотной фазовой записи.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Сундук на дне морском
Сундук на дне морском

Опубликован механизм знаменитой реакции Зелинского. Получение бензола из ацетилена с помощью автокаталитического каскада на углеродных наночастицах
Российские исследователи показали, что карбеновые центры на зигзагообразных краях графеновых структур могут представлять собой альтернативную платформу для создания эффективных каталитических систем. В частности впервые был представлен механизм реакции Зелинского: тримеризации ацетилена с образованием такого важного продукта как бензол.

Подводятся итоги творческого конкурса «ЮниКвант»
На конкурс «ЮниКвант» для участия в профильной смене по био- и нанотехнологиям в ВДЦ «Океан» поступило более 100 заявок.

Круги на нано-полях
Тысяча SEM-микрофотографий иллюстрируют эффект упорядочивания наночастиц палладия на углеродной подложке. В журнале Scientific Data опубликована новая статья Ananikovlab.ru, в которой визуализируется и обсуждается этот уникальный эффект упорядочения.

2019-nCoV: очередной коронованный убийца?
Анна Петренко
В статье рассказывается о коронавирусе 2019-nCoV — что мы знаем сегодня. А ведущие международные научные издательства предоставляют бесплатный доступ к новым статьям, посвященных изучению коронавируса

Дышать свободно: как воздухоочистители борются с вирусами
Ростех
В перечне помощников в борьбе с вирусом COVID-2019 – также воздухоочистители. Речь идет о системах очистки воздуха, которые работают на основе фотокатализа. Их фильтры способны справиться с 99% бактерий и вирусов, в том числе могут стать действенным способом борьбы со злополучным COVID-2019.

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2020 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.