Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

"Нано Дайджест": Лучшие разработки нанотехнологий 2011

Ключевые слова:  наномашины, наномедицина, наносенсор, нанотехнологии, наноэлектроника

Опубликовал(а):  Палии Наталия Алексеевна

11 января 2012

"Нано Дайджест": Уходящий 2011 год оказался не менее плодотворным на различные интересные инновации в области нанотехнологий, чем предыдущий. "Нано Дайджест" собрал наиболее интересные достижения ученых и основные тренды уходящего года в сфере нанотехнологий.

Наномашина. Наиболее примечательной разработкой в области наномашин нам представляется проект исследователей из университета Гронингена в Нидерландах и Швейцарской научно-исследовательской лаборатории материаловедения и технологии, которые создали прототип наноразмерного «авто», представляющего собой большую молекулу, с четырьмя симметричными элементами, которые играют роль колес. Топливом ему служит электрический заряд, поступающий от щупа электронного микроскопа.

Наномашина размерами 4 на 2 нанометра помещается на медную подложку и подзаряжается током от расположенного над ним щупа электронного микроскопа каждые пол-оборота «колес». Стекающие со щупа электроны вызывают структурные изменения в моторных элементах молекулы и заставляют их вращаться. Вращаются они только в одну сторону, так что заднего хода у наномобиля нет.

Плащ-невидимка из графена. Ученые из Университета Далласа в Техасе изобрели плащ-невидимку, использовав известное природное явление – мираж. Новый материал, созданный на базе графена, обладает свойствами, сходными с раскаленным песком в пустыне, что позволяет "отводить глаз" от предмета, делая его невидимым. При этом невидимость можно включать и выключать, пуская по наноматериалу электрический ток.

Мираж в природе появляется при резких скачках температуры на поверхности небольшой площади. Лучи света преломляются и попадают на сетчатку глаза, не отражаясь при этом от поверхности. Поэтому если в пустыне у человека перед глазами возникает образ озера, то это часто оказывается лишь отражением голубого неба, которое отразилось от горячей прослойки воздуха у раскаленного песка.

Наноэлектроника. Исследователи из Японии и Швейцарии продемонстрировали возможность связывания между собой отдельных молекул с помощью проводящих ток молекулярных нанопроводов. Это открытие является важным шагом к созданию мономолекулярной электроники, что позволит во много раз уменьшить размеры привычных нам электронным устройств. Ключом к мономолекулярной электронике является объединение функциональных молекул в единую цепь с помощью токопроводящих нанопроводов. Наноэлектроника получит новый импульс после этой разработки. Сложностей в этой задаче две: как расположить нанопровода в нужных местах и как соединить их с функциональными молекулами химической связью.

В качестве исходного субстрата японцы взяли мономолекулярную пленку из диацетилена, нанесенного на графитовую подложку. Затем на него было нанесено небольшое количество фталоцианина, из которого на поверхности субстрата образовались нанокластеры. На заключительном этапе исследователи переместили щуп сканирующего туннельного микроскопа к одной молекуле фталоцианина и, подав на щуп пульсирующее напряжение, инициировали цепную полимеризацию диацетилена, в результате чего образовался полимерный нанопровод, который можно дотянуть до другой молекулы фталоцианина. По мнению создателей, данная схема будет функционировать как диод.

Наномозг. Мозг человека по многим параметрам превосходит современные вычислительные системы. Его структурными элементами, как известно, служат нейроны, количество которых у человека приближается к ста миллиардам. Уникальной характеристикой соединяющих нейроны синапсов является их способность изменять эффективность связи. В это связи ученые уже много лет ведут поиск способа искусственно смоделировать нейронную сеть мозга. Недавно сотрудники Стэнфордского университета (США) заявили о создании функциональной модели синапса на основе материала с лёгким изменением фазового состояния.

Такие материалы часто применяются при конструировании элементов памяти. Значения «0» и «1» в этом случае кодируются разными уровнями сопротивления, между которыми можно переключаться, подавая электрические импульсы, которые нагревают материал и вызывают фазовое превращение. При высоком сопротивлении состояние вещества аморфно, а при низком переходит в кристаллическое. Ученым удалось добиться на порядок более высокой разницы сопротивления в обоих состояниях, что было необходимым условием для моделирования синапса и, как показали последующие опыты, схема на базе узлов из такого вещества действительно работает подобно фрагменту сетки нейронов.

Наногенератор. Вскоре достаточно будет просто носить гаджет в кармане и он подзарядится от движений – с таким заявлением выступили создатели плоских «наногенераторов», которые при сжатии, сгибании или тряске вырабатывают то же напряжение, что и обычная батарейка АА или ААА. Исследователи из Технологического Института Джорджии добились значительного успеха в области понижения размеров пьезоэлектрических генераторов, при это сохраняя их высокую энергоемкость. Ученые разработали два типа наногенераторов, помещенных в полимер. Каждый из них представляет собой стопку тонких листков, соединенных нанопроводами из пьезоэлектрического оксида цинка, толщиной в несколько сотен нанометров.

В одном прототипе пространство между нанопроводами заполнено пластиком, а вся конструкция находится между двумя пластинами электропроводного материала. При небольшом сжатии он вырабатывает напряжение около 0,24 В. Другой генератор содержит больше нанопроводов и вырабатывает 1,26 В, то есть приближается к напряжению стандартной батарейки или аккумулятора.

Наномедицина и профилактика. Ученым из Университета Айовы удалось с помощью наночастиц пролить свет на сложные процессы, происходящие внутри элементов живой клетки. Все элементы клетки, по сути, можно назвать природными наномеханизмами, однако в настоящее время ученые имеют весьма смутное представление о том, как именно они их выполняют. Американцы выделили и исследовали несколько типов базовых перемещений, происходящих во внутриклеточных наномашинах.

Наномедицина позволяет разработать новые методы диагностики. Поступательное перемещение несложно отследить с помощью современных микроскопов. Однако вращательное движение наблюдать намного сложнее вследствие ограничений наблюдательной техники, вследствие чего многие процессы, в основе которых лежат вращательные молекулярные перемещения, до сих пор слабо изучены. Затем ученые ввели в клетку наностержни из золота, размеры которых составляют 25 нм в диаметре и 75 нм в длину, которые рассредоточились по клетке. Затем с помощью микроскопии по методу интерференционного контраста они смогли замерить и их положение и перемещение и смоделировать на компьютере полную трехмерную картину происходящих в клетке перемещений. Результаты их исследований могут помочь в лечении различных тяжелых заболеваний, таких, как болезнь Альцгеймера, а также продвинуть исследования в области искусственного моделирования внутриклеточных процессов.

Наносенсор. Ученые из Стенфордского университета разработали инновационный чип-биосенсор, позволяющий диагностировать рак на ранних стадиях. Сенсор, сконструированный профессором Шаном Вонгом и его коллегами основан на нанотехнологии магнитного детектирования и способен обнаруживать заданный протеин-биомаркер рака при концентрации один к ста миллиардам (то есть 30 молекул на один кубический миллиметр крови). Такой сенсор почти в тысячу раз чувствительнее, чем применяющиеся в настоящее время технологии диагностики начальных стадий развития опухолей. Кроме того, его работа одинаково эффективна в любой биологической жидкости, в которой врачам нужно определить нахождение ракового биомаркера – в слюне, плазме и сыворотке крови, моче или лимфе. Эффективность наносенсорного чипа была подтверждена опытами на мышах. При этом, как сообщают ученые, сенсор можно настроить на поиск самых различных протеинов-биомаркеров и, соответственно, обнаруживать не только рак, но и многие другие заболевания.

Нанобот. Корейские ученые заявили о разработке новой технологии управления медицинскими микророботами в теле человека. О перспективах микроботов или даже наноботом писали многие, как ученые, так и фантасты. Перемещаясь с током крови, микромашины могли бы выполнять сложнейшую работу, доставлять лекарственные препараты, убивать раковые клетки и бактерии, разрушать тромбы и другие образования, до которых невозможно добраться никаким другим способом. Однако на настоящее время проблемой остается не только конструирование некоторых узлов микроботов, но и управление ими.

Исследователи из Южной Кореи предложили использовать внешнее магнитное поле для создания двух различных типов движений наноробота: «винтового» или штопорообразного и поступательного. В первом случае робот сможет перемещаться вперед/назад и «бурить» или другим образом разрушать тромбы. Во втором – сворачивать в нужный кровеносный сосуд в месте разветвления артерии и выполнять другие маневры, связанные с перемещением в кровеносной системе. В ходе проведенных испытаний в макете кровеносного сосуда, заполненного водой, ученые подтвердили эффективность такого способа управления микророботом.

Выращивание органов. Мысль о том, что органы для трансплантации можно выращивать, не нова, однако к ее осуществлению есть ряд препятствий. Органы нельзя вырастить, как кусочек кожи в чашке Петри, им нужна объемная матрица, своего рода каркас для роста. Однако ученые из университета Райса предложили совершенно иной способ – выращивать органы в подвешенном положении с помощью магнитного поля. Осуществлением этого метода занимается лаборатория n3D Biosciences. С помощью вирусов бактериофагов в клетку доставляется запатентованная смесь наночастиц под названием Nanoshuttle. Эти частицы внутри клеток реагируют на воздействие магнитного поля, что позволяет контролировать рост ткани в трех измерениях. В таком подвешенном положении клетки могут жить и размножаться, образуя объёмные структуры, согласно заложенной в ДНК программе. Культура клеток будет развиваться естественно, гораздо лучше, чем на дне плоской чашки Петри. А значит, и функционировать в лабораторных условиях клетки будут как в живой природе. В ходе экспериментов специалистам n3D Biosciences уже удалось вырастить эмбриональные клетки почки (HEK293), которые можно использовать для скорейшего заживления ран и тестирования определенных лекарств.

Восстановление ткани позвоночника. Совместной группе ученых из Италии и США удалось добиться значительных успехов в области восстановления ткани позвоночника после травм. Обычно после переломов в месте повреждения образуется рубец, не передающий биотоки, вследствие чего человек оказывается частично или полностью парализован. Ученые выдвинули идею выращивания с помощью опорных наноструктур множества крошечных параллельных трубочек, в которых нарастала бы новая нервная ткань. Такие конструкции из трубочек 2-3 мм длиной и 0,5 мм в диаметре удалось сформировать из биоразложимых полимеров, при этом внутренняя поверхность канальцев покрыта молекулами, играющими роль химических зацепов для самосборки пептидов. Действенность терапии уже доказана экспериментами на крысах, которые восстановили подвижность задних лапок после травмы в течение шести месяцев, что возвращает надежду людям с параплегией.

Восстановление сетчатки глаза. Другое достижение из области наномедицины снова из Италии, из института технологий в Милане. Ученые нашли способ восстановления повреждённой сетчатки глаза восстановить с помощью светочувствительного пластика.

Создание нейропротезов является непростой задачей, поскольку биологические ткани обычно плохо совмещаются с электроникой и могут оказывать негативное влияние на работу нервных клеток. Решением проблемы искусственной сетчатки стали гибкие полупроводники: ученые засеяли поверхность светочувствительного полупроводникового полимера нервными клетками, которые выросли и сформировали сложные разветвленные нейронные сети. В ходе экспериментов выяснилось, что покрытый нейронами полимер можно использовать в качестве электрода в светоуправляемой электролитической ячейке, при этом он обладает пространственной избирательностью. Кроме того, по словам исследователей, его можно настроить так, чтобы он реагировал только на световые волны определённой длины, благодаря чему становятся возможными разработки систем лечения поврежденной сетчатки так, что восстановится цветное зрение.

Нетрудно заметить, что большая часть наиболее интересных инноваций 2011 года связана с наномедициной. Быть может, в этом есть некий символизм, поскольку сложнейшие элементы человеческих клеток, по сути, и есть природные наномашины, и ученые чаще всего не придумывают новое, а копируют подсмотренное у природы. Возможно же, что такое внимание к медицинским разработкам дает надежду на то, что будущее нанотехнологий это все же не военные наноботы, а медицинские роботы, и что новые технологии сделают человека более сильным, ловким и здоровым, а не превратят его в рабочий механизм.

Георгий Проконичев




Комментарии
Рыжков Илья Николаевич, 13 января 2012 22:16 
Интересно)
Рябчук Сергей Викторович, 17 января 2012 16:15 
Интересно. И написано внятно. Одно замечание. В комментарии автор написал "в этом есть некоторый символизм". Символизм - это устойчивый термин, не имеющий никакого отношения к теме дайджеста. Цитирую по энциклопедии Кругосвет: "СИМВОЛИЗМ (от фр. symbolisme, от греч. symbolon – знак, опознавательная примета) – эстетическое течение, сформировавшееся во Франции в 1880–1890 и получившее широкое распространение в литературе, живописи, музыке, архитектуре и театре многих европейских стран на рубеже 19–20 вв." krugosvet.ru›enc/kultura_i…SIMVOLIZM.html
Не проще ли было написать: "это достаточно символично" или "это подчеркивает то/суть того/, что сложнейшие" и т.д
Как говорил Базаров: "Друг Аркадий, не говори красиво". А ведь он был доктор и естествоиспытатель. Совет небезполезный всем нам, работающим в области научных коммуникаций.












Палии Наталия Алексеевна, 18 января 2012 12:14 
Не проще ли было написать: "это достаточно символично" - вы совершенно правы, Сергей Викторович, а при подготовке к публикации этой заметки применялся не только метод "copy-paste" (cкопировать-вставить), львиная доля времени была потрачена, чтобы найти эти работы "американских, ...корейских ученых" и и дать ссылки на оригинальные статьи.
Что касается собственно символизма - то в философском словаре можно найти более широкое определение: "Символизм - филос. концепции, построенные на основе интерпретации понятия символа как первоосно-вания связи бытия, мышления, личности и культуры. (В узком смысле - эстетическое направление и художественный стиль в европейской культуре с 1880-х по 1920-е гг.)"(см. здесь)
Shvarev Alexey, 17 января 2012 22:48 
Поворчу. Ни одна из вышеприведенных гм, "вещей" разработкой не является. Разработка
заканчивается запасом изделия на складе на две недели продаж. Тогда о ней и говорят
"мы разработали". В противном случае говорят "не получилось" и делают презентацию
на тему "почему" и какие из этого сделаны оргвыводы. И все R&D манагеры получают
трындулей вместо ежегодного бонуса.
Все вышеприведенное - исследования, возможно вполне законченные, куски PhD проектов
и проч. ЗАканчиваемые публикацией. Возможно идущие в разработку, но до нее как до Урала пешком.
И 99.999% таких находок сдохнут на полпути.
Так что нету тута разработок, сиречь и слово "технология" в наисамолучшем
определении данным великим Лемом просто пачкается, извините...
Палии Наталия Алексеевна, 18 января 2012 12:18 
нету тута разработок- одна- все-таки есть - по ссылке Выращивание органов вы переходите на сайт компании n3D Biosciences, Inc.
Алексей, конечно же, за один год вряд-ли можно провести исследования, опубликовать результаты, получить патент, создать производство ...и получить изделия на складе на две недели продаж...
Stanislaw Lem doodle
Shvarev Alexey, 18 января 2012 17:27 
Угу. Тот стартап вроде как успешно продали. Так что ссылка на сайт имеет значимость
скорее историческую. Но вот от введения частиц магнетита в клетки до "выращивания органов"
дистанция мягко говоря не пешеходная, примерно как от планера Лилиенталя до полета на Луну.
Может вдруг я что пропустил? Дяди вырастили почку? Или сердце?
И оне уже лежат на складе? Не надо человеческое, можно мышиное
для начала.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Фуллеритовый цветок
Фуллеритовый цветок

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.