Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Явление дополнительного электрического поля в контактах металл - полупроводник

Ключевые слова:  барьеры Шоттки, диоды Шоттки, дополнительное электрческое поле., омический контакт

Опубликовал(а):  Мамедов Расим Кара оглы

09 января 2012

На физическом факультете Бакинского Государственного Университета в результате многолетних научно-исследовательских работ в области физики конденсированных сред, проведенных под научным руководством проф. Р.К.Мамедова, было установлено [1] неизвестное ранее физическое явление возникновения дополнительного электрического поля (ДЭП) в реальных контактах металл – полупроводник (КМП).

Эта структура является основным физическим элементом практически всех видов дискретных полупроводниковых приборов и компонентов интегральных микро- и наносхем. В последние годы явление ДЭП стало важным объектом экспериментальных исследований с помощью Атомно - Силовой Микроскопии в таких научных центрах как Томский Государственный Университет и Научно – Исследовательский Институт Полупроводниковых приборов Российской Федерации.

Сущность явления ДЭП заключается в следующем. Согласно теоретической модели Шоттки [2], если определенная поверхность металла с работой выхода ФМ непосредственно контактируется с поверхностью полупроводника n – типа с работой выхода ФS и ФМ ~ ФS, то КМП обладает омическими свойствами и схематически изображается как на рисунке 1а. В действительности, при непосредственном контакте металла с полупроводником, работы выхода (~ 4-5 эВ) их свободных поверхностей, примыкающих контактной поверхности остаются неизменными, а высота потенциального барьера контактной поверхности становиться порядка 1 эВ. Возникновение контактной разности потенциалов между контактной поверхностью и примыкающими к ней свободными поверхностями металла и полупроводника образует ДЭП с интенсивностью EF вокруг боковой области металла, которое при микро- и нано КМП полностью охватывает приконтактную область полупроводника, как это схематично представлено на рисунке 1(b).

АСМ изображение рельефа Au – nGaAs диодов Шоттки с диаметром 15 mkm представлено на рисунке 1с, где четко виден одиночный круглый контакт золота. АСМ изображение распределения контактной разности потенциалов (КРП) между острием иглы кантилевера (зонда) и поверхностью Au – nGaAs диода Шоттки представлено на рисунке 1 d. Видно, что КРП в области металла значительно меньше КРП свободной поверхности nGaAs за пределами контакта. По мере удаления от периметра контакта значение КРП постепенно увеличивается от минимального, равного КРП поверхности металла, до максимального, равного КРП свободной поверхности полупроводника. При этом под действием ДЭП вокруг круглого контакта наблюдается осесимметричная протяженная переходная область (ореол) шириной около 15 mkm с КРП, отличной от КРП свободной поверхности полупроводника. В интервале ширины ореола КРП меняется почти линейно.

В монографии [2] подробно описаны исторические этапы развития физики КМП, физические основы образования ДЭП, энергетические модели формирования действующих потенциальных барьеров, механизмы и аналитические формулы токопрохождения на основе теории термоэлектронной эмиссии в присутствии ДЭП, методики определения эффективных электрофизических и геометрических параметров реальных КМП, сравнительный анализ существующих литературных материалов в интерпретациях с ДЭП процессами.

Рис.1. Схематические изображения контакта металл – полупроводник без ДЭП(а)и с ДЭП(b). АСМ изображения рельефа(с) и распределения поверхностного потенциала (d) контакта Au - nGaAs c диаметром 15 мкм.

Исследование явления возникновения ДЭП и электронных процессов связанных с ним в реальных КМП вызвало большой интерес со стороны ученых России. В диссертации [3] детально изложены физические основы явления возникновения ДЭП и обусловленные с ним электрофизические, термоэлектронные и конструктивно-технологические процессы в реальных КМП. Впоследствии всесторонние исследования образования ДЭП в реальных КМП и его особенности в зависимости от природы контактирующих материалов, конфигурации и геометрических размеров контактных структур, типа проводимости и концентрации примесей полупроводника проводились на кафедре Физики Полупроводников Томского Государственного Университета [4]. Представлены результаты непосредственного измерения ДЭП с методикой АСМ на контактах металлов (Au, Ni, Ti, Pd) с полупроводниками (n-GaAs, n+- GaAs , p - GaAs), феноменологическая модель распределения потенциала ДЭП вдоль свободной и контактной поверхностей, ряд новейших и важнейших научных результатов по КМП, предсказанных на основе теоретических предпосылок, изложенных в монографии [2].

Явление возникновения ДЭП в реальных КМП позволяет открывать новые научные направления в области физики полупроводников и полупроводниковых приборов, твердого тела, тонких пленок, поверхности, нанофизики, микроэлектроники, фотоэлектроники, биоэлектроники, наноэлектроники и др. Это явление позволяет более глубоко и детально интерпретировать процессы, происходящие в реальных контактных структурах конденсированных сред.

Явление ДЭП является научной основой для повышения качества и расширения функциональных возможностей многочисленных дискретных полупроводниковых приборов, микросхем и наносхем на основе КМП структур. Данные структуры составляют элементную базу всех видов приборов и установок современной электронной техники. Уже разработан [5] КМП преобразователь световой энергии в электрическую, где ток фотоэдс превышает темновой ток более чем в 1000 раз. Между тем в аналогичном КМП преобразователе без ДЭП ток фотоэдс превышает темновой ток всего около 10 раз. Кроме того, недавно выявлены [6] новые свойства КМП с ДЭП, в которых обратный ток полностью отсутствует при начальных напряжениях и скачкообразно растет при дальнейшем увеличении напряжения.

Литература

1. Мамедов Р. К. Двухбарьерная физическая модель реальных контактов металл – полупроводник, Вестник Бакинского Университета: серия физ.мат. наук, 2001, № 2, с. 84-94

2. Мамедов Р. К. Контакты металл - полупроводник с электрическим полем пятен, Баку: БГУ, 2003, 231 с.

3. Мамедов Р. К. Электрофизические свойства реальных контактов металл – полупроводник, Автореферат докторской диссертации, Баку: БГУ, 2004, 60 с.

4. Новиков В. А. Исследование морфологии и электронных свойств поверхности пленок AIIIBV и контактов металл/AIIIBV методом атомно-силовой микроскопии, Автореферат кандидатской диссертации, Томск.: ТГУ, 2010, 18 с.

5. Торхов Н. А. Влияние фотоэдс на токопрохождение в контактах металл – полупроводник с барьером Шоттки, ФТП, 2011, т.45, .в.7, .с.965 -973

6. Mamedov R.K., Yeganeh M.A. Current Transport and Formation of Energy Structures in Narrow Schottky diodes, J. Microelectronics Reliability, 2011


Источник: Baku State University




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Нанофутбол
Нанофутбол

Пять медалей завоевали российские школьники на Международной физической олимпиаде
Стали известны итоги 50-й Международной физической олимпиады для школьников, которая проходила в Тель-Авиве (Израиль). Российская сборная завоевала в состязаниях 4 золотые и одну серебряную медаль.

Поступление в совместный российско-китайский Университет МГУ-ППИ в Шэньчжэне
В июле 2019 года в МГУ имени М.В. Ломоносова проходит набор учащихся на программы МГУ, реализуемые в Университете МГУ-ППИ в Шэньчжэне. Поступление в совместный университет – это возможность учиться в самом быстроразвивающемся городе мира на русском языке у ведущих преподавателей МГУ по самым современным программам, получить образование мирового уровня и дипломы сразу двух университетов, овладев китайским языком. Для поступления в совместный университет не требуется владения китайским языком. Прием документов и экзамены проходят на территории МГУ. Абитуриенты имеют право поступать одновременно в МГУ имени М.В. Ломоносова и МГУ-ППИ в Шэньчжэне.

Вокруг Нанограда
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. И сам город оказался молодым, динамичным, современным и интересным. Ниже дан небольшой фоторепортаж вокруг Нанограда, беглый взгляд, что собой представляет Ханты - Мансийск.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.