Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Мономолекулярный слой графена, полученный на системе 4” Black Magic
Hallbar, изготовленный из графена с помощью системы 2” Black Magic в Технологическом Университете Чалмерса
AIXTRON: первая в мире автоматизированная коммерческая система для роста графена на подложках размером 300 мм

Графен: Курс на приборы в промышленных масштабах

Ключевые слова:  CVD, графен, наноматериал

Опубликовал(а):  Булаев Петр Валентинович

25 октября 2011

Компанией AIXTRON успешно разработаны и внедряются две ключевые технологии получения графена: химическое осаждение из паровой фазы (CVD) и высокотемпературная сублимация.

Химическое осаждение из паровой фазы с использованием углеродных реагентов является одним из наиболее обещающих методов для реализации контролируемого осаждения графена на большой площади при низкой себестоимости. Система Black Magic производства AIXTRON идеально подходит для этого - основанная на масштабируемой концепции showerhead, она содержит нижний и верхний малоинерционные нагреватели, автоматическое регулирование температуры поверхностис помощью ИК пирометрии и возможность использования плазмы. Гибкость системы AIXTRON привлекла внимание как исследователей, так и производителей, и на сегодняшний момент компания уже поставила системы для выращивания графена на подложках размером от 50 до 300 мм. Система 300 мм оборудуется встроенным автоматизированным роботом-загрузчиком и многоподложечным шлюзом, что позволяет достичь высокого уровня производительности.

Что такое графен?

Графен представляет собой монослой атомов углерода, упорядоченных в гексагональную решетку. Мы привыкли иметь дело с графитом, используемым при производстве карандашных стержней, батареек, смазочных материалов и т.д., который представляет собой не что иное как сложенные вместе пластинки графена. Термин графен, образованный из слова графит и суффикса -ен, был предложен Хансом Петером Бемом, впервые описавшим моноатомные слои углерода в 1962 году.

Своими уникальными свойствами графен обязан тому факту, что он является двумерным материалом, представляющим собой слой всего в один атом. Много лет графен оставался только теоретической концепцией, которая изучалась на бумаге. Прорыв произошел в 2004 году, когда Андрей Гейм и Константин Новоселов из Манчестерского Университета успешно получили одноатомные слои графена путем многократного прикладывания клейкой ленты к поверхности графита и последующего перенесения его на другую поверхность! Они доказали существование графена и перешли к демонстрации некоторых его уникальных двумерных электронных свойств. После этого последовали интенсивные исследования в области выращивания и применения графена, опубликованные в более чем 3000 научных работ. Андрей Гейм и Константин Новоселов были удостоены Нобелевской премии по физике в 2010 году.

В чем заключаются важные свойства графена

В отличие других полупроводниковых материалов, графен по сути является полуметаллом или полупроводником с нулевой запрещенной зоной. Формируя графеновые наноленты путем подбора ориентации и ширины графена или используя определенные полевые структуры, запрещенная зона может быть открыта. Носители заряда в графене «не имеют массы» и ведут себя во многом схоже с фотонами, частицами света. Поэтому графен обладает чрезвычайно высокой подвижностью электронов и следовательно может с успехом применяться в высокоскоростных транзисторах. Графен прозрачен, каждый слой поглощает ~2.3 % света. Благодаря своей двумерной структуре это материал обладает такими свойствами, как дробление заряда и дробный квантовый эффект Холла, что потенциально делает его полезным в квантовых компьютерах и спинтронике.

И, хотя графен имеет толщину всего лишь в один монослой, он является очень гибким и самым прочным из исследуемых наноматериалов, обладающим прочностью на разрыв в 200 раз выше стали.

Где графен может использоваться?

Чрезвычайно высокая подвижность электронов графена может использоваться в высокочастотных транзисторах, последние исследования продемонстрировали ВЧ транзисторы на основе графена с предельной частотой выше 100 ГГц. Более того, благодаря своей прозрачности и высокой проводимости, графен также может использоваться в дисплеях, сенсорных панелях, органических светодиодах и солнечных элементах. Гибкость графена также открывает новые возможности в производстве гибкой электроники. Другие потенциальные применения графена включают в себя сенсоры и электроды для суперконденсаторов.


Источник: www.aixtron.com



Комментарии
Палии Наталия Алексеевна, 25 октября 2011 15:05 
а в Пенсильванском университете разработали технологию получения графена при нормальных условиях
Невероятно!!
Неужели они заморозили липкую ленту?
Палии Наталия Алексеевна, 25 октября 2011 22:03 
Извините, при комнатной температуре
Да я даже не об этом.
По ссылке я нашёл только рекламу. И за 50000 такую технологию уж точно не продают.
Палии Наталия Алексеевна, 27 октября 2011 22:21 
50000 - это грант NSF (а вообще-то Пенсильванский университет входит в "Лигу плюща")
Антонов Алекс, 25 октября 2011 19:30 
"Бывает нечто, о чем говорят: "смотри, вот что-то новое"; это было уже в веках, бывших прежде нас. Нет памяти о прежнем; Да и о том, что будет, не останется памяти у тех, которые будут после." -Экклезиаст, Гл.1:10-11.
Позволю себе напомнить- почти 20 лет назад похожее нечто было. Причины, вызвавшие появление этого "инновационного исследования" интересны сейчас только историкам. Результат- а никакого результата.

Но повальная графенизация, или "графенация", в чем- то и полезна.
Палии Наталия Алексеевна, 25 октября 2011 22:05 
Полезна, интересна и занимательна
тем более, что получают и исследуют все новые и новые 2D- материалы - SrMnB2, например (подробнее здесь)
Антонов Алекс, 28 октября 2011 10:07 
Без сомнения занимательная!
Мне просто интересно, какие условия необходимо соблюдать, чтобы разложить углеродсодержащее вещество, обеспечить взаимодействие только углерод-углерод-подложка?

Очень рад за открывателей SP2 углерода!
А то ведь были случаи непризнания- один ученый открыл сверх высокопрочную смесь карбидов, а ему даже выйти на защиту не дали- видите ли, даже алмазом нельзя обработать! И что с этим делать?
А здесь и Нобеля дали.
Палии Наталия Алексеевна, 29 октября 2011 22:35 
еще один способ получения графена - Growth of Graphene from Food, Insects, and Waste
Антонов Алекс, 30 октября 2011 00:57 
Блеск!
Knippenberg со свим ингибированием пироосаждения H2 не досмотрел!
А это стратегическое сырьё надо складировать бережно и в долины, силиконовые.
И работать, работать.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Все, что вы хотели знать о белых и пушистых
Все, что вы хотели знать о белых и пушистых

Светодиодные технологии и оптоэлектроника: магистратура на стыке образования и индустрии
Открыт набор на первую в России индустриальную программу «Светодиодные технологии и оптоэлектроника» Университета ИТМО

Международная онлайн-дискуссия «Квант будущего»
Фонд Росконгресс, Госкорпорация «Росатом», Российский квантовый центр и научно-популярное издание N+1 завершают серию международных онлайн-дискуссий «Квант будущего», где лидеры индустрии и ведущие мировые ученые обсуждают, как квантовые технологии уже изменили наш мир, и с какими вызовами помогут справиться в будущем.
Заключительная дискуссия «Квантовая революция: профессии будущего и трансформация образования» состоится 8 июля в 17:00 по московскому времени.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Супергибридный материал для хранения водорода. Двумерная соль. Существование виртуальных мультиферроиков подтверждено. Чёрные бабочки. Служение науке и немного поэзии.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.