Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1: Схема полученного фототранзистора
Рис. 2: Спектр поглощения нанокристаллического PbS
Рис. 3: Зависимость тока через транзистор от напряжения на затворе и энергии фотонов облучающего света
Рис.4: Зонная диаграмма нанокристаллического PbS
Рис. 5: Схема осуществления темновой (a) и световой (b) проводимости нанокристаллического сульфида свинца

Открываем транзистор с помощью света

Ключевые слова:  нанопорошок, полупроводник, транзистор, фотоэлемент

Опубликовал(а):  Чепиков Всеволод Николаевич

24 октября 2011

Сульфид свинца на сегодняшний день – широко применяемый в технике полупроводник. Наиболее широко он используется в производстве фотоэлементов.

Группа ученых из американской национальной Лаборатории в Лос Аламос получила фототранзистор на основе пленки из нанокристаллического PbS (рис. 1). Управление проводимостью канала в таком устройстве может осуществляться как приложением управляющего напряжения к затворному электроду (то есть за счет полевого эффекта), так и освещением поверхности (то есть за счет генерации светом неравновесных носителей заряда). Нанокристалличность, по-видимому, требовалась для увеличения ширины запрещенной зоны по сравнению с объемным сульфидом свинца. Размер нанокристаллов составлял около 3,3 нм, что соответствовало ширине запрещенной зоны около 1,3 эВ. Это, безусловно, влияло на спектр поглощения PbS.

Хочу сразу сказать, что вероятность поглощения фотона резко увеличивается с ростом его энергии (рис. 2), следовательно, скорость генерации носителей заряда при этом тоже возрастает, и фотопроводимость увеличивается. Это позволяет в исследованиях фотопроводимости оперировать не интенсивностью света, а энергией фотонов монохроматического излучения.

Исследователи изучили двухпараметрическую зависимость тока через транзистор от управляющего напряжения и энергии фотонов света (рис. 3). (Для темновой проводимости истинной является только ветвь, соответствующая отрицательным напряжениям, а положительная ветвь – артефакт измерений, в то время как в действительности ток очень близок к нулю). Из требуемой отрицательности прилагаемых затворных напряжений можно сделать вывод о дырочном характере проводимости. А из различной подвижности носителей заряда при световой и темновой проводимости – об обеспечении их разными энергетическими зонами.

Зонная диаграмма сульфида свинца (рис. 4) содержит заполненную валентную зону, пустую зону проводимости и промежуточный между ними почти полностью занятый (а следовательно, почти не проводящий) локальный уровень. Приложение электрического поля снижает уровень Ферми, повышая концентрацию дырок на локальном энергетическом уровне и обеспечивая за счет него темновую проводимость. Освещение же выбивает электроны из валентной зоны, создавая там дырки и делая ее проводящей. Так называемая зона проводимости в проводимости практически не участвует в обеспечении проводимости транзистора.

Подобные описанному устройства уже сейчас находят применение на практике (в составе фотоэлементов и оптопар), так что подробный анализ работы конкретного их примера может оказаться не только занимательным, но и полезным.


Источник: Nature Communications




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Магнитные жидкости. Шар с сюрпризом.
Магнитные жидкости. Шар с сюрпризом.

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.