Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Октапод - структурная единица будущего материала
Макроструктуры из октаподов в окружении линейный цепей
Упорядоченная решетка полученного материала под электронным микроскопом

Самосборка октаподов в каркас

Ключевые слова:  наночастица, пористые материалы, самосборка

Опубликовал(а):  Чепиков Всеволод Николаевич

12 октября 2011

Самосборка молекул в сложные функциональные единицы почти повсеместно встречается в живой природе. Число таких процессов, реализованных в технологии нанокристаллов, также растет, хотя этот подход все еще находится на довольно примитивном уровне. Нанокристаллы уступают по сложности и функциональности биомономерам {Прим. ред.: ... но не будем переживать по этому поводу, это столь разные вещи!}, а процесс сборки сложных структур отличается достаточно плохим качеством.

На процесс формирования упорядоченных структур влияют многие факторы (Ван-дер-Ваасьсовы, кулоновские, поверхностные, капиллярные и магнитные силы), что делает его чрезвычайно чувствительным к подбору оптимальных условий. Как правило, определяющими являются свойства "мономеров" (размер, форма частиц, их лиофильные и электростатические свойства) и растворителей, в которых происходит контролируемая агрегация наночастиц.

Процесс самосборки должен быть высокоселективен. Для этого на поверхности частиц кодируется "информация" о сборке. Затем с помощью различных функциональных групп, привитых на поверхность, становиться возможным изменять характер взаимодействия между наночастицами. Для связывания частиц используются различные бифункциональные "линкеры" или комплиментарные молекулярные пары "ключ-замок". После образования цепей происходит их самоагрегация в макроструктуры под действием электростатических и других сил.

И, тем не менее, в синтезе таких структур остается еще немало нерешенных проблем. Основными являются сложность синтеза исходных нанокристаллов с заданной морфологией и распределением по размеру, а также селективность их сшивки, немаловажной является и проблема очистки целевой структуры от исходных "мономеров" и "олигомеров" без ее разрушения. Все это накладывает серьезные ограничения на качество, воспроизводимость и максимальный размер структуры.

Совсем недавно в данной области появилось новое направление - синтез упорядоченных структур из разветвленных нанокристаллов (тетраподов и октаподов). Он состоит из двух основных стадий: сначала нанокристаллы формируют линейные цепи, а они затем самоорганизуются в трехмерные структуры (при упаривании растворителя или при сушке). Примечательно, что свойства данных структур определяются формой нанокристаллов. Однако, по сравнению с обычными кристаллами, сборка разветвленных частиц имеет ряд сложностей. Во-первых, до недавнего времени не было возможности синтезировать монодисперсные по размеру наночастицы, сохраняющие стабильность в растворе. На данный момент эта проблема решена для составных кристаллов с ядром из CdSe и 8 "ножками" из CdS, растворенных в неполярных или малополярных апротонных растворителях, таких как толуол и хлороформ. Вторая проблема - это сложная форма нанокристаллов, которая ограничивает их подвижность в растворе и может приводить к образованию вредных аморфных прослоек, которые нарушают процесс кристаллизации. С другой стороны, форма частиц уже "несет в себе" информацию о сборке, которую просто необходимо реализовать в подходящих условиях. В ходе многочисленных экспериментов было выявлено, что при добавлении ацетонитрила происходит коагуляция частиц как в толуоле, так и в хлороформе.

Синтез описанных структур является интересным шажком на пути к созданию новых материалов, в частности, для для солнечной энергетики и электроники.


Источник: Nature Materials




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Оксидные горы, пирохлорные берега
Оксидные горы, пирохлорные берега

Премии Правительства Москвы молодым ученым за 2019 год
Объявлены лауреаты премии Правительства Москвы молодым ученым за 2019 год. Премией отмечены 50 работ молодых столичных ученых. Среди лауреатов 12 сотрудников МГУ имени М.В.Ломоносова. Конкурс на получение премий Правительства Москвы молодым ученым проводится с 2013 года. Торжественное награждение победителей состоится 7 февраля 2020 года в Государственном Кремлевском дворце.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Перерождение кремния: от полупроводника к металлу. Морская губка – основа для создания новых наноструктурных композитов. Нитрид-борные аналоги углеродных колец. Лучшие научные сюжеты года по версии APS. Сверхпроводимость ставит новый температурный рекорд. Звук переносит массу? Всяко-разно.

Наносистемы: физика, химия, математика (2019, том 10, № 6)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume10/10-6
Там же можно скачать номер журнала целиком.

Да пребудет с вами сила плазмонов!
А.А.Семенова, Э.Н.Никельшпарг, Е.А.Гудилин, Н.А.Браже
Ученые Московского университета приблизились к решению проблем современной медицинской диагностики с использованием единичных клеток и их органелл путем разработки новых неинвазивных оптических методов анализа.

Юрий Добровольский: «Через 50 лет вся энергия будет вырабатываться биоорганизмами»
Андрей Бабицкий, Юрий Добровольский
Главный редактор ПостНауки Андрей Бабицкий побеседовал с химиком Юрием Добровольским о науке о материалах, будущем энергетики и новых аккумуляторах

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.