Как известно, пресс-релизам западных университетов не всегда можно легко поверить, особенно в русскоязычном переводе, посколько наши читатели дотошнее и хотят знать истину. А у "них", как известно, "истина где-то рядом". Ниже в качестве примера - один из недавних пресс-релизов...
Ученые университета Лестера (Великобритания) обнаружили размер-селективное действие воды на растворенные в ней наночастицы {Прим. ред. Пока что ничего необычного - так должно быть из - за высокой поверхностной энергии наночастиц. Слово "растворенные" не совсем корректно, речь, видимо, идет о коллоидной системе - ЗОЛЕ наночастиц}. Исследователи ввели в воду наночастицы кремния с различным распределением по размеру и каплю полученной суспензии поместили на высушенную под вакуумом подложку из высокоориентированного пиролитического графита. Результаты анализа методом атомно-силовой микроскопии (АСМ) показали, что средний диаметр осажденных частиц составляет около 1 нм, и несмотря на то, что в воду вводились более крупные наночастицы, ни один из диаметров частиц не превышает 3 нм. {Прим. ред. Как говорят, "дьявол скрыт в деталях". Здесь вполне может быть метрологическая проблема. КАК определяли размер частиц в растворе? Например, если это было динамическое светорасеяние, то оно, как известно, обычно ЗАВЫШАЕТ размер даже идеально сферических частиц, определяя диаметр частицы "вместе" с окружающей оболочкой растворителя и "шубы" ионов, прилежащих к поверхности}
Исследователи объяснили такое поведение частиц взаимодействием сил притяжения и отталкивания. Наночастицы кремния притягиваются между собой ван-дер-Ваальсовыми силами {Прим. ред. Вот это совсем не факт. Чтобы золь был стабилен, лучше, чтобы частицы отталкивались, иначе он долго не проживет}. Энергия этого притяжения прямо пропорциональна их диаметру и обратно пропорциональна расстоянию между ними {Прим. ред. В этом утверждении есть что - то совсем сакральное. Или это не дисперсионные взаимодействия!}. Термодинамическая энергия наночастиц {Прим. ред. Видимо, имелось в виду что - то типа "Термодинамически, энергия взаимодействия наночастиц..."}, действующая против ван-дер-Ваальсовых сил и препятствующая их агломерации, больше энергии притяжения маленьких частиц {Прим. ред. С учетом вышесказанного фраза полностью теряет ясный смысл...}. Для наночастиц размером 3 нм, в отличие от больших по размеру, эти силы сбалансированы, поэтому последние легко агломерируются в воде в макроскопические зерна {????}. Наночастицы кремния с диаметром менее 3 нм не агломерируются и образуют устойчивую суспензию {Прим. ред. золь!}.
Ученые предположили, что суспензия будет обладать хорошими флуоресцентными свойствами {Прим. ред. Что давно известно...}, которые присущи наночастицам кремния, и провели соответствующий экперимент. В результате исследований было установлено, что источником флуоресценции суспензии являются нанокластеры {Прим. ред. Либо "нано", либо "кластер"...} кремния размером 1 нм, что согласовывается с данными, полученными методом АСМ.
Флуоресценция в «голубой» области видимого спектра
Наночастицы кремния флуоресцируют в «голубой» области видимого спектра (близкой к излучению УФ). Результатом оригинальной технологии, разработанной учеными, стал тот факт, что интенсивность свечения наночастиц кремния в суспензии не ослабевает в течение более года {Прим. ред. Чтобы не смущать молодых читателей, отметим, что имеется в виду, конечно, не то, что частицы постоянно светятся в течение года, нарушая закон сохранения энергии, а то, что их люминесценция в повторном тестовом эксперименте при облучении ультрафиолетом не очень сильно ослабела после одного года}. Изначально исследователями было получено свечение наночастиц кремния в газовой фазе {???}, затем они осадили водяной пар с частицами на холодной подложке до образования льда. Его плавление привело к образованию суспензии флуоресцирующих наночастиц кремния {Прим. ред. Что не грешить против истины, отметим, что плавление льда просто перевело систему в жидкое состояние, не стоит понимать так, что плавление льда вызвало появление люминесценции частиц}.
По мнению ученых, их технология может быть полезной при производстве наночастиц других элементов (не только кремния), и следующим шагом они планируют изучить, будет ли размер-селективное свойство проявляться в других растворителях также хорошо, как в воде {Прим. ред. Будет!.. Если и дальше известным физико - химическим закономерностям продолжить придумывать новые наукообразные термины...}.
Открытие размер-селективного эффекта может быть отнесено к следующим приложениям наноструктуры: оптоэлектроника, катализ, биомедицинские диагностика и терапия {Прим. ред. Это утверждение относится к стандартным научным фантазиям}.
Больше информации можно найти в журнале Nanotechnology.