Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Камерлинг Оннес
Рисунок 1 - Детали одного из холодильников коллайдера в 18 киловатт, который является частью большой криогенной системы, используемой для поддержания температур, необходимых для супержидкого гелия (-271,25 градусов по Цельсию). Фотография сделана 28 апреля 2008 года. (Mona Schweizer, © CERN)
Рисунок 2 - Маглев в Шанхае (Рис.Википедия)
Рисунок 3 - К принципу работы СКВИДа
Рисунок 4 - Джон Бардин, Леон Куппер, Джон Шриффер - создатели теории сверхпроводимости
Hbceyjr 5 - В своей лабораторной тетради К.Оннес написал: "Kwik nagenoeg nul" — «Сопротивление ртути практически нулевое» (рис. из Physics Today)

Очень холодный юбилей

Ключевые слова:  Оннес, сверхпроводимость, юбилей

Опубликовал(а):  Клюев Павел Геннадиевич

28 апреля 2011

Сверхпроводимость празднует свой вековой юбилей. В 2011 году исполняется 100 лет со дня открытия этого явления. А история его открытия такова. В начале 20-го века физика низких температур была еще очень молодой наукой. Вплотную ей начали заниматься лишь в конце 19 века. В то время ученых интересовали свойства материалов при низких температурах. В частности считалось, что сопротивление материала пропорционально корню квадратному из температуры, а вот при низких температурах зависимость нарушалась, поэтому представлялось интересным исследовать эту зависимость. Одним из таких ученых был голландский химик и физик Камерлинг Оннес. К.Оннеса интересовала зависимость удельного сопротивления материала от числа дефектов или примесей в нем, при условии, что сам материал находится при низких температурах, то есть избавлен от тепловых шумов. Основываясь на экспериментальных данных для более высоких температур, К.Оннес предполагает, что со снижением температуры и ее приближением к абсолютному нулю сопротивление чистых металлов также должно плавно стремиться к нулю. Для экспериментального подтверждения гипотезы были нужны низкие температуры. В 1908 К.Оннес переводит в жидкое состояний изотоп гелия-4, таким образом, достигая температуры 4.2 К. Вскоре он начинает эксперименты с металлами при низких температурах. Проведя опыты с золотом и платиной, К.Оннес решает, что для большей точности эксперимента нужно использовать максимально чистый металл. К 1911 году К.Оннес уже имеет более совершенный криостат на жидком гелии, а в качестве металла берет ртуть, которая лучше всего поддается очистке. Проведя эксперимент с ртутью, К.Оннес обнаружил, что ртуть переходит в сверхпроводящее состояние при температуре чуть менее 4,2 К. Так и была открыта сверхпроводимость.

Сегодня применения сверхпроводимости различны. Не будь открыта сверхпроводимость, даже работа адронного коллайдера была бы сегодня под вопросом - для его работы просто необходимы сверхпроводники. Фокусируют движущиеся в коллайдере пучки частиц с помощью магнитного поля. Оно настолько велико, что электромагниты должны выдерживать ток в 12кА, а это возможно только при переходе материала в сверхпроводящее состояние. Другие применения сверхпроводимости - уже в быту - поезда на магнитной подушке (довольно экзотичное явление, сегодня полноценно функционирует в Китае между Шанхаем и аэропотром Пудун, в Корее - между Центральным научным музеем и ЭКСПО-Парком). Поезд разгоняется до скорости 431 км/ч. Поезда на магнитной подушке часто называют маглевами (от англ.magnetic levitation - магнитная левитация). Еще одно применение - СКВИДы - сверхпроводящие квантовые интерферометры - сверхчувствительные магнетометры для измерения очень слабых магнитных полей. В них используется кольцо из сверхпроводящего материала.

Среди всех известных материалов самой высокой температурой перехода в сверхпроводящее состояние обладают купраты (соединения меди с кислородом) - 164 К. Многообещающе выглядят исследования пниктидов - сверхпроводящих соединений на основе железа (железо, фосфор или мышьяк и кислород).

В свежем выпуске журнала Nature Materials по случаю празднования 100-летия со дня открытия сверхпроводимости читателям предлагается целый ряд публикаций, посвященных теме сверхпроводимости. Для заинтересовавшихся высокотемпературной сверхпроводимостью и пниктидами будут интересны статьи в Nature Physics, в частности в свежем выпуске можно почитать о применениях сканирующей туннельной микроскопии для исследования электронной структуры пниктида Ba0.6K0.4Fe2As2. Интересный материал о сверхпроводимости представлен на сайте Химического факультета МГУ. К столетию открытия явления сверхпроводимости заведующий отделением сверхпроводящих проводов и кабелей Всероссийского научно-исследовательского проектно-конструкторского и технологического института кабельной промышленности (ОАО "ВНИИКП"), доктор технических наук В.Высоцкий дал интервью, которое можно почитать на страницах федерального портала Нанотехнологии и наноматериалы.




Комментарии
А ещё Камерлинг-Оннес впервые наблюдал сверхтекучесть. Тоже любопытный факт
Трусов Л. А., 28 апреля 2011 11:23 
Kwik nagenoeg nul

nagenoeg
Браво! Достойное событие и такая же достойная его статья! С юбилеем сверхпроводимость!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

nano-Вулкан
nano-Вулкан

Школа PI SCAMT: Стань руководителем глобальной лаборатории
Университет ИТМО приглашает принять участие в Школе PI. Школа PI - это возможность узнать как из точки А "молодой кандидат наук" дойти до точки Б "научный руководитель". За 1 неделю вы узнаете об этапах организации успешной исследовательской группы в России и разработаете дорожную карту построения своей собственной лаборатории. Школа PI подходит для кандидатов наук, защитивших диссертацию в области естественных наук не ранее 2015 года. Прием заявок до 1 мая 2021 г.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Новые титансодержащие комплексы для водородных
аккумуляторов. Зеленая электроника: мягкий актуатор из венериной мухоловки. Шелковичные черви создают новые нанокомпозиты in vivo. Конференции

В магистратуру МГУ - без экзаменов, юбилейная универсиада
Универсиада МГУ - уникальный конкурс, впервые проводимый в новом формате, который охватывает широкий диапазон участников – студентов и выпускников специалитета, бакалавриата, магистратуры, аспирантов, молодых ученых. Конкурс рассчитан на поддержку талантливой молодежи, мотивацию дальнейшего развития научно-исследовательской карьеры, пропаганду научных знаний, активное вовлечение участников в обмен мнениями и равноправное соревнование со своими сверстниками и коллегами на международном уровне, а также поступление в бесплатную магистратуру МГУ без экзаменов по результатам Универсиады.

Спинтроника и iPod
В.В.Уточникова
В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.

ДНК правит компьютером
Бидыло Тимофей Иванович
Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…

Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич
Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.