Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. На рисунке схематически изображен процесс синтеза графена.
Рисунок 2. а) Кристаллит никеля до начала образования ламели. b) Образование ламели под воздействием электронного пучка. c) Втягивание ламели при температуре 5600С. d)-f) Втягивание ламели кристаллита кобальта спустя 1 с (d), 159 с (e) и 196 с (f). Дифрактограммы I и II подтверждают присутствие аморфного углерода и графена соответственно. g) Образование двухслойного графена после втягивания ламели кристаллита никеля при температуре 7200С.

Каталитический графен

Ключевые слова:  графен, электронная микроскопия

Опубликовал(а):  Шуваев Сергей Викторович

03 февраля 2011

Широкий спектр существующих методов получения графена способен удовлетворить запросы даже самого взыскательного исследователя. Он может отщепить его клейкой лентой, может получить CVD-методом, восстановлением оксида графена или, например, разложением карбидов на поверхности подложки. Однако в последнее время все большее внимание исследователи уделяют получению графена из твердых источников углерода, что продиктовано более высоким качеством образующегося графена. В частности, графен может быть получен из аморфного углерода при помощи пленок d-металлов, выступающих в качестве катализатора, о чем сообщил коллектив французских исследователей.

Для начала ученые нанесли тонкие слои железа, никеля, кобальта и меди на аморфный углерод. Отжиг при температуре выше 4000С (для кобальта) и 5000С (для никеля) вплоть до 6000С приводит к сращиванию металлических кристаллитов за счет миграции и оствальдского созревания, и в конечном итоге приводит к образованию тонких металлических островов, оставляя аморфный углерод нетронутым. Однако при более высоких температурах в результате дополнительного созревания металлических "островков", высвобождающийся из-под их тонкого слоя аморфный углерод превращается в моно- и многослойный графен (рис.1).

Для более детального исследования механизма образования графена авторы статьи использовали возможности электронной микроскопии, имитируя дополнительное созревание кристаллитов при температурах выше 6000С. Для этого, авторы направляли электронный пучок на край металлического "острова", перемещая его в сторону от "островка". Вслед за пучком перемещается образующаяся металлическая ламель до тех пор, пока при определенной длине ламель не втянется "островком", из которого она исходит. После себя ламель оставляла графен шириной 10-20 нм и длиной 100-200 нм (рис.2).

Однако ученые убеждены, что графен образуется на всей поверхности, а не только под ламелью. В качестве доказательства, авторы статьи приводят видео, на котором показан процесс втягивания ламели при нагревании. Ученые обратили внимание, что положение примеси графита остается неизменным до и после втягивания, и на основании этого сделали вывод о том, что графен, удерживающий примесь графита, образовался еще до удаления ламели.

Любопытно, что толщину образующегося графена можно варьировать, варьируя используемый катализатор. Причем ключевым фактором является растворимость углерода в металле - с ростом растворимости растет и толщина графена. Так, в случае железа образуется графен, состоящий из наибольшего числа слоев, а в случае меди графен не образуется вовсе.

Get the Flash Player to see this player.


На видео изображено втягивание ламели, под которой заметна частица графита.
скачать встроить

Источник: ACS Nano



Комментарии
Палии Наталия Алексеевна, 04 февраля 2011 11:19 
Очень интересный метод получения графена
Клюев Павел Геннадиевич, 05 февраля 2011 02:02 
Однако в последнее время все большее внимание исследователи уделяют получению графена из твердых источников углерода, что продиктовано более высоким качеством образующегося графена. В частности, графен может быть получен из аморфного углерода...

Интересно, Вы, Альберт Рудольфович, вообще читали это сообщение?
Интересно. Оказывается, что графен получают не только "с помощью скотча", но и подругому и даже помучают многослойный. Что уже почти готовые многослойные трубки?
Dusha, 10 февраля 2011 21:50 
Боже, какие проходимцы и как только не приклеиваются к денежной
тематике... Главное умное слово "графен" упомянуть. Эту реакцию под
электронным пучком еще мой босс обсосал лет 30 назад. Посмотрите на
фамилию Зайковского В.И.
Тогда это была немодная бесполезная, но красивая игрушка, а сейчас -
передовой край зарубежной науки
То, что там в результате получается, к графену никакого отношения конечно же не имеет.
Клепа, 16 февраля 2011 17:34 
В конце 60ых было сделано о-оочень много, конечно не по графену, по "bulk graphene"®.
Например Zur Technologie der pyrolytischen Graphit-Herstellung и другие.
И, к удивлению, до сих пор полезны- последний экземпляр, на английском , подарен нач. цеха, когда восстанавливали это производство. Сказал полезно

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Морская живность
Морская живность

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.