Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. a) фотография купюры 5 евро с массивом органических транзисторов. b) фотография отдельного транзистора. c) поперечное изображение банкноты со схемой, сделанное с помощью сканирующей электронной микроскопии. d) сделанное с помощью просвечивающей электронной микроскопии.
Рисунок 2. а) вольт-амперные характеристики транзистора с р-каналом на банкноте 5 евро, подвижность носителей заряда 0.3 см2-1-1 b) вольт-амперные характеристики транзистора с n-каналом, подвижность 0.005 см2-1-1. Благодаря маленькой толщине (5.7 нм) и большой емкости (700 нФ/см2) диэлектрического слоя, транзисторы могут работать при малых напряжениях порядка 3 В
Рисунок 3. a) вольт-амперные характеристики 92 работающих транзисторов. b) статистическое распределение максимального тока стока, подвижности носителей заряда, соотношения включения/выключения и максимального тока затвора работающих транзисторов. c) карта распределения подвижности носителей заряда для 100 транзисторов на области 10х8 мм2.
Рисунок 4. Фотографии и вольт-амперные характеристики 8 неработающих транзисторов. Для сравнения показан работающий транзистор и его характеристики.

Нанотехнологии на борьбе против фальшивомонетчиков

Ключевые слова:  микроэлектроника, органический транзистор, тонкие пленки

Опубликовал(а):  Дё Виктор Владимирович

03 февраля 2011

Современные банкноты имеют более 50 признаков, по которым их можно отличить от подделок. Это различные водяные знаки, голограммы, рельефные оттиски, люминесцентные печатные краски и многие другие особенности. Но создание такого большого количества степеней защиты очень усложняет процесс производства бумажных денег и делает его дорогим. В этой работе ученые из немецкого Института Макса Планка показали возможность снабжать банкноты ультратонкой электронной меткой. Подобная технология может не только обеспечить отслеживание и проверку банкнот на подлинность, но и сократить количество мер, принимаемых для обеспечения безопасности купюр. Важно при этом, чтобы процесс создания подобной защиты не повлек повреждения банкноты. Использовать для этого кремниевые интегральные схемы проблематично, потому что они слишком толстые (минимальная толщина 20 мкм), чтобы потом наносить их на банкноты. По-другому дело обстоит с органическими тонкопленочными транзисторами, которые могут быть получены на различных поверхностях, таких как фольга, волокна, бумага. В этой статье исследователи наносили слои оксида алюминия, золота и органических материалов непосредственно на поверхности банкноты и получали схему, состоящую из тонкопленочных транзисторов. При этом все это делалось без агрессивных химических веществ или высоких температур, которые могли бы повредить банкноты. Транзисторы имеют толщину менее 250 нм и могут эксплуатироваться при рабочем напряжении 3 В, получаемом от беспроводного источника питания.

Набор органических тонкопленочных транзисторов, сделанных на купюре в 5 евро, показан на рисунке 1. С использование разных органических полупроводников были получены транзисторы с каналами n-типа и p-типа. Для механической защиты и для защиты от окружающей среды на транзисторы напыляли слой органического материала из газовой фазы.

Для определения выходов и идентичности тонкопленочных транзисторов на купюре, были померены характеристики 100 транзисторов с одинаковой длиной (30 мкм) и шириной (100 мкм) канала. Из 100 резисторов функционируют 92. Вольт-амперные характеристики и распределение электрических параметров этих 92 функционирующих резисторов представлены на рисунке 3 a,b. Для того, чтобы выяснить, почему некоторые транзисторы работают недостаточно эффективно, авторы выбрали область размером 10х8 мм2, содержащую 100 транзисторов, и построили для них карту распределения подвижности носителей заряда (рисунок 3, с). Нерабочим считали транзистор, у которого подвижность меньше 0.05 см2-1-1, а соотношение тока включения и выключения меньше чем 3*103. Большая часть неработающих транзисторов находилась в одной области массива, поэтому авторы предположили, что низкая подвижность может быть связана с присутствием в этой области больших волокон материала банкноты. Действительно, на увеличенном изображении крупные волокна видны, но они также присутствуют и в нормально работающих транзисторах, а в неработающих иногда и отсутствуют (рисунок 4).

Таким образом, авторы показали возможность создания интегральной схемы на поверхности банкнот для электронной защиты денег от подделок. Но столкнулись с проблемой уменьшения количества работающих транзисторов, что может быть связано с микронеровностями рельефа банкноты.




Комментарии
Везде проблемы и с деньгами тоже, а не только на олимпиадах.
Интересно а смогут ли эти транзисторы сказать, что деньги "хорошие" побывав в наших карманах?
Семёнов Максим Юрьевич, 04 февраля 2011 08:53 
Вместе с транзисторами добавить на купюру фотоэлектрический слой, сделав её солнечной батареей и определять подлинность с помощью вольтметра...
И хранить деньги не в банках, а обклеивать ими крыши, экономя на электроэнергии..
Чем не 12% годовых?
Добавить чип и фиксировать каждого владельца
купюр.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Вольфрамовый зонд
Вольфрамовый зонд

Дистанционный лекторий ФНМ МГУ
Опубликованы приглашения на 4 интересные лекции онлайн лектория проекта дистанционного образования факультета наук о материалах МГУ имени М.В.Ломоносова на ближайшую неделю.

Евгений Кац: Перовскит, загадка названия и история открытия
28 мая 2020 г. в 18:00 мск. в рамках развития дистанционного образования ФНМ МГУ имени М.В.Ломоносова состоится онлайн лекция известного ученого, профессора Евгения Каца (Ben-Gurion University of the Negev) "Перовскит, загадка названия и история открытия", который известен не только своими выдающимися научными достижениями в области химии твердого тела, углеродных наноматериалов, перовскитной фотовольтаики, но и большим вкладом в популяризацию науки.

М.Гретцель "The stunning rise of perovskite solar cells"
28 мая 2020 г. в 19:00 мск. в рамках развития дистанционного образования ФНМ МГУ имени М.В.Ломоносова состоится онлайн лекция всемирно известного ученого, профессора М.Гретцеля (Федеральная политехническая школа Лозанны) "The stunning rise of perovskite solar cells".

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2020 году
коллектив авторов
2 - 5 июня пройдут защиты магистерских диссертаций выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Академия – университетам: химия и науки о материалах в эпоху пандемии
Гудилин Е.А., Горбунова Ю.Г., Калмыков С.Н.
Отделение химии и наук о материалах РАН, а также химический факультет и факультет наук о материалах МГУ инициируют реализацию открытого образовательного проекта «Академия – университетам: химия и науки о материалах в эпоху пандемии». В рамках проекта ведущие ученые, члены Российской и международных Академий, видные представители вузовской науки прочитают тематические образовательные лекции по химии, науках о материалах, современным подходам в биологии и медицине. Видеозаписи лекций будут размещены в открытом доступе и могут быть использованы ВУЗами в основной и дополнительной образовательных программах, а также для самоподготовки и мотивации студентов и аспирантов на будущие научные достижения.

2019-nCoV: очередной коронованный убийца?
Анна Петренко
В статье рассказывается о коронавирусе 2019-nCoV — что мы знаем сегодня. А ведущие международные научные издательства предоставляют бесплатный доступ к новым статьям, посвященных изучению коронавируса

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.