Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1.
Рисунок 2. ПЭМ-микрофотографии LTNS (a) и CTNS (b).
Рисунок 3. РФА-анализ образца, отожженного при различных температурах.
Рисунок 4. а) Первый цикл зарядки/разрядки при различных токах разрядки. b) Циклическая вольтамперограмма при скорости съемки 1мВ/с. c) Зависимость емкости ячейки от количества циклов зарядки/разрядки при скорости разрядки 10 С и соответствующая фарадеевская эффективность. d) Зависимость емкости ячейки от количества циклов зарядки/разрядки при различных скоростях разрядки.

Переворачивая титановые листы

Ключевые слова:  литиевая батарея, оксид титана

Опубликовал(а):  Шуваев Сергей Викторович

02 февраля 2011

Диоксид титана - один из наиболее перспективных кандидатов для использования в качестве материала анода в литий-ионных батареях. Его выбор весьма не случаен - при интеркаляции ионов лития объем элементарной ячейки изменяется менее, чем на процент, что позволяет многократно проводить процесс зарядки/разрядки без разрушения анода. Кроме того, TiO2 инертен по отношению к большинству используемых электролитов. Тем не менее, чтобы сделать применение диоксида титана возможным, исследователю необходимо в разы увеличить удельную поверхность по сравнению с объемным материалом. Поэтому к настоящему времени предложено множество наноструктур TiO2 различной геометрии, которые более или менее успешно примерялись на роль анода в литий-ионных батареях. Поддерживая этот тренд, коллектив ученых из Сингапура предложил оригинальный (и что немаловажно "экологичный") метод синтеза нанолистов оксида титана, стабилизированных аморфным углеродом (CTNS).

На рисунке 1 вкратце изображен предложенный авторами статьи метод синтеза углеродных нанолистов, стабилизированных ионной жидкостью ([(CH3)2N+(H)-C2H4OH][CH3COO]), которые затем подвергаются карбонизации при 3500С. Крайне важно, что ключевую роль в образовании конечной структуры играют ионы лития, которые ингибируют рост кристалла TiO2 вдоль направления [010], поскольку при их отсутствии вместо слоистой образуется сплошная структура. Анализируя результаты ПЭМ (просвечивающей электронной микроскопии), авторы статьи отмечают, что толщина одного нанолиста равна 0.4 нм, что соответствуют периоду элементарной ячейки анатаза вдоль направления [010] (рис.2).

Чтобы подтвердить механизм, предложенный на рисунке 1, исследователи сравнили рентгенограммы, снятые при разных температурах (рис.3). При низких температурах отчетливо заметен интенсивный пик (2θ = 8.48°), подтверждающий образование многослойной структуры (LTNS), стабилизированной молекулами ионной жидкости. По мере роста температуры выше 2500С интенсивность пика снижается, что соответствует карбонизации ионной жидкости, пока полностью не исчезает при 3500С, что подтверждает образование неупорядоченной структуры. В то же время, с ростом температуры растет интенсивность пиков, соответствующих фазе анатаза, до тех пор, пока она не станет единственной при температуре 4000С.

Для исследования электрохимических свойств полученного материала авторы статьи собрали двухэлектродную ячейку, в которой литий выступает и как противоэлектрод, и как электрод сравнения. В отличие от ячеек, в которых используются аноды из уже известных материалов на основе анатаза, профили зарядки/разрядки демонстрируют неизменный градиент при различных токах разрядки в отличие от привычного плато. Ученые объясняют эту аномалию тем, что диффузия ионов лития протекает в основном на поверхности слоистых структур, что сродни зарядке конденсатора, поэтому плато, соответствующее внедрению ионов лития внутрь фазы анатаза (при интеркаляции/деинтеркаляции лития), не наблюдается.


Источник: Advanced Materials




Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Благородные опалы: бублик и стручок
Благородные опалы: бублик и стручок

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.