Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1 Изменение формы наночастиц серебра под действием света.
Рис. 2 Спектры поглощения наночастиц серебра различной формы.
Рис. 3 Механизм роста наночастиц серебра.

Фотохимические оборотни

Ключевые слова:  наночастицы, плазмонный резонанс

Опубликовал(а):  Гудилин Евгений Алексеевич

22 декабря 2010

Недавно была разработана методика синтеза наночастиц серебра, которые изменяют свою форму под воздействием света. В данной статье авторы представляют систематическое исследование возможности быстро и обратимо изменять форму частицы от круга до треугольника. Целью данной публикации является объяснение механизма этих превращений. В ходе работы авторы исследовали поведение раствора в котором находились наночастицы серебра, ионы серебра и анионы лимонной кислоты под действием света. В этой методике важную роль играет использование цитрата. Цитрат необходим для достижения двух целей. Во-первых, он абсорбируется на наночастицах серебра, препятствуя образованию агломератов этих частиц. Во-вторых, цитрат участвует в фотохимической реакции, в результате которой происходит восстановление серебра на по поверхности наночастицы. При этом протекает следующая фотохимическая реакция:

Citrate + 2 Ag+ = acetone-1,3-dicarboxylate + CO2 + H+ + 2Ag

Вначале наночастицы серебра имели форму дисков. Воздействуя на частицы светом от 2 до 16 минут, авторы получали частицы треугольной формы. На рис. 1 представлены фотографии просвечивающего электронного микроскопа иллюстрирующие изменение формы частиц с увеличением времени облучения. С полученных наночастиц различной формы авторы снимали спектры поглощения в ультрафиолетовом и видимом диапазонах. На рис. 2 представлены эти спектры. Мы видим, что происходит смещение максимума от 546 до 592 нм. Этот максимум появляется вследствие возникновения диполь плазмонного взаимодействия. На врезке представлена зависимость размера частицы от длины максимума длины волны поглощения. Рис. 3 иллюстрирует механизм роста треугольников. Цитрат селективно абсорбируется на грани {111}, препятствуя её дальнейшему росту. Процесс роста наночастиц полностью подчиняется закономерностям роста кристаллов симметрии fcc.

Текст подготовлен Павленко А.В., Саматов И.Г., Шестаков М.В. (ФНМ, 1 г/о магистратуры) по материалам статьи DOI: 10.1039/c0cc02580a


Источник:



Комментарии
Л В А, 22 декабря 2010 10:40 
Можно получить активные метаматериалы, пусть и ограниченный их круг, достаточно дешёвым способом. Самый простейший прибор - адаптивный фильтр с изменяемыми проницаемостью, анизотропией и спектром, вернее со сдвигающейся границей поглощения, в зависимости от полученной дозы. Обратная связь по падающему излучению.

Если поиграть с размерами и управляемостью ч-ц в зависимости от их размеров, то такой материал будет иметь селективные х-ки по ч-те или набору частот.
Мне кажется, можно также позабавится с длиной импульсов.

Возможно самое же интересное - можно на базе получить микроболометрические матрицы с чувствительностью приличной по интенсивности, экспозиции и к длине волны. Причём управляемой и малочувствительной к импульсным загрузкам.

Обращает внимание, что на Рис. 1 получаемые треугольные ч-цы ориентированы.

Интересная информация
Юный максималист, 22 декабря 2010 12:28 
Надо было прочитать основную статью,
doi:10.1039/B913811K
и изложить поподробнее методику синтеза.
И в статье явно не хватает хотя бы какого-то
исследования распределения частиц по размеру.
Палии Наталия Алексеевна, 26 декабря 2010 20:15 
наверное, меняется и структура частиц, не только форма

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Применение магнитных жидкостей. Магнитная смазка.
Применение магнитных жидкостей. Магнитная смазка.

Все члены сборной России получили медали на 30-й Международной биологической олимпиаде для школьников
21 июля в Сегеде (Венгрия) подвели итоги 30-й Международной биологической олимпиады для школьников. Российская сборная на состязании завоевала три серебряные медали и одну бронзовую.

Шесть медалей завоевали российские школьники на 60-й Международной математической олимпиаде
Стали известны итоги 60-й Международной математической олимпиады для школьников, которая проходила в Бате (Великобритания). Российская сборная завоевала две золотые и четыре серебряные медали.

Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019
Участие НТ-МДТ Cпектрум Инструментс в международной конференции ACNS’2019. Тезисы доклада Быкова В.А.

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.