Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1 СЭМ изображения процесса свертки тонких пленок In0.3Ga0.7As толщиной 38нм с жертвенным слоем Al0.75Ga0.25As в двух разных направлениях. (а) Тонкая пленка с размерами 10 × 25 мкм в течение 60 секунд формирует трубку диаметром 3 мкм, посредством сворачивания вдоль короткой стороны. (b) Тонкая пленка с размерами 19 × 50 мкм во время 180 секундного травления формирует трубку толщиной 4 мкм сворачиваясь вдоль длинной стороны.
Рис. 2 Зависимость направления свертки от линейных размеров тонких пленок и диаметра получаемых трубок.
Рис. 3 Зависимость энергии внутренних напряжений пленок от рассогласования параметров для различных типов свертки прямоугольников.
Рис. 4 Вынужденная свертка вдоль длинной стороны прямоугольника с размерами 50 мкм × 19 мкм × 38 нм, достигнутая с помощью анизотропного травления.
Рис. 5 СЭМ-изображение с милиметровым массивом полупроводниковых нанотрубок In0,3Ga0,7As/GaAs диаметром 600нм и толщиной 14 нм.

Массовое производство полупроводниковых нанотрубок

Ключевые слова:  нанотрубки, технология Принца

Опубликовал(а):  Гудилин Евгений Алексеевич

19 декабря 2010

В последнее время все более очевидным становится тот факт, что полупроводниковые нано- и микротрубки перспективны для оптоэлектронии, плазмоники, создания MEMS-ов и т. д. Перспективным подходом для создания полупроводниковых микро- и нанотрубок является технология, разработанная в 1995 году Виктором Яковлевичем Принцем, впоследствии названной Принц-технологией. Схема метода такова: на подложку из арсенида галлия осаждается жертвенный слой AlxGa1-xAs(x = 0.6-0.8), на который, в свою очередь, осаждаются несколько слоев арсенида галлия, допированного алюминием. Несмотря на относительно большое рассогласование параметров, арсенид галлия, допированный индием, осаждается эпитаксиально, что приводит к значительным внутренним напряжениям в такой пленке, а значит, к созданию большого запаса потенциальной энергии в ней. Если же разрушить контакт между напряженной пленкой и подложкой, посредством травления жертвенного слоя, эта потенциальная энергия будет высвобождена, что приведет к сворачиванию пленки в трубку. Такой метод удачно сочетает в себе преимущества bottom-up подхода (эпитаксиальный рост пленок) с Top-down процессом литографии. Это сочетание позволяет облегчить переход к массовому производству полупроводниковых нанотрубок. Очевидно, что для воспроизводимого получения микро- и нанотрубок определенной конфигурации с заданными характеристиками необходимо всесторонне изучить сам процесс сворачивания.

Американские ученые из штата Иллинойс решили проверить, является ли процесс сворачивания полностью зависящим от энергии внутренних напряжений пленки, или же процесс сворачивания зависит от каких-либо других факторов во время сворачивания? Причем американские ученые изучали выбранный процес как теоретически (методом конечного элемента(МКЭ)), так и практически - с помощью фотолитографии и метода химического осаждения из паровой фазы с использованием металлорганических прекурсоров (MOCVD).

Измерения методом конечного элемента производились на четверти образца. Внутренние напряжения в пленке моделировались посредством задания разных температур на пленке и подложке. Очевидно что, моделирование такого эксперимента, при заданных условиях, может привести только к одному варианту сворачивания (например вдоль длинной стороны пленки). Чтобы реализовать другие варианты сворачивания, американские ученые ограничивали способность к сворачиванию одной из сторон на начальном этапе свертки.

На рис. 1 представлен процесс свертки двух прямоугольных пленок In0.2Ga0.8As с разной геометрией. В процессе свертки пленки с размерами 10 × 25 мкм видно, что на начальном этапе она старается свернуться во всех четырех направлениях, что приводит к «тупиковому» состоянию через 45 секунд после начала свертки, однако через 55 секунд все же формируется трубка. Это является свидетельством невероятно высокой гибкости ультратонких неорганических полупроводниковых мембран. На рис. 2 приведены данные по сворачиванию различных полупроводниковых тонкопленочных прямоугольников в интервале длин/ширин 5-100 мкм. Авторы отмечают, что диаметр (величина с) полученных трубок не определяется линейными размерами прямоугольников, но целиком и полностью потенциальной энергией тонких пленок, связанных с рассогласованием параметров. В случае «вытянутых» прямоугольников (b/a) >9 свертка всегда происходит вдоль короткой стороны. Если b/a невелико и С/a<<1, свертка происходит смешанным образом. И только при особом значении b/a ∼ 2.6 происходит свертка вдоль длинной стороны, причем вне зависимости от диаметра трубки и размеров прямоугольника.

Для объяснения такого характера свертки авторы статьи использовали метод конечного элемента (рис. 3). Практически в любом случае сворачивание вдоль короткой стороны более выгодно энергетически, кроме небольшого участка в области начала координат, где преобладает смешанная свертка. Этот рассчет полностью согласуется с практикой, кроме особого случая свертки вдоль длинной стороны.

Авторы отмечают, что в случае анизотропного травления МКЭ показывает, что можно легко менять направление свертки. На рис. 4 показан пример, когда вытянутые прямоугольники сворачиваются вдоль длинной стороны посредством более интенсивного травления вдоль длинной стороны.

В заключении американские ученые демонстрируют сильные стороны Принц-технологии в виде полученного массива полупроводниковых трубок (рис. 5). Также ученые отмечают, что направление свертки определяется не только размерами прямоугольников, но и диаметром получающейся трубки, а с точки зрения энергетики процесса свертки важное значение имеет не только начальное и конечное состояние, но также и путь процесса свертки. Если же будет достигнуто глубокое понимание процесса свертки пленки, ученые не сомневаются в успехе Принц-технологии при создании MEMS, NEMS, применении трубок в наноэлектронике и нанофотонике.

А.А.Адаменков и коллеги по материалам http://pubs.acs.org/doi/abs/10.1021/nl101669u





Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Ёлки-палки!
Ёлки-палки!

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.