Поговаривают, что в последние годы кремниевые технологии потихоньку подходят к пределам своих возможностей. А нам так хочется, чтобы электронные устройства становились всё меньше, быстрее и экономичнее. Одним из выходов из сложившейся ситуации является внедрение других полупроводниковых материалов, например, соединений A3B5, в уже отработанные кремниевые технологии. Однако вырастить качественные слои сложного состава на подложке из кремния не так-то просто.
Большая группа исследователей (16 человек) из США и Тайваня разработала эффективный метод переноса наноразмерных лент из арсенида индия на кремниевые подложки. Схема технологии изображены на рисунке 1. Сперва методом молекулярно-лучевой эпитаксии на подложке GaSb/AlGaSb выращивается монокристаллическая плёнка InAs. Из неё литографически нарезаются ленты, после чего подложка под ними избирательно подтравливается, как показано на рисунке 2. Далее при помощи эластомера полидиметилсилоксана ленты переносятся на подложку Si/SiO2. Длина лент составляет 10 мкм, ширина – 300 нм и высота – 18 нм. По такой методике можно переносить ленточки из разнообразных материалов, а также выкладывать из них многослойные структуры (рис. 3).
Чтобы такие замечательные наноленточки не пропали даром, ученые сделали из них полевой транзистор. Для этого ленточки чуть-чуть окислили для получения слоя InAsOx толщиной 1 нм и напылили 8 нм слой ZrO2 в качестве диэлектрика затвора (рис. 4). Характеристики устройства приведены на рисунке 5. Величины силы тока во включенном и выключенном состоянии транзистора отличаются в 104 раз.
Таким образом, было придумано, как интегрировать наноленточки InAs в полупроводниковое устройство. Авторы не видят принципиальных сложностей масштабирования технологии и предлагают для этого выращивать ленты A3B5 прямо на 12-дюймовых пластинах и непосредственно переносить на пластины Si/SiO2. Подробности можно узнать в статье «Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors» (DOI: 10.1038/nature09541) и обширном вспомогательном материале к ней.
этот момент как-то от меня ускользнул. сами они пишут следующее: InAs NRs were transferred by pressing (10–200 N/cm2, ~10 sec) the PDMS slab on a Si/SiO2 receiver substrate in ambient laboratory condition (e.g. room temperature and air environment). Before the transfer of InAs NRs, the receiver substrate was cleaned by acetone, IPA, and DI water. The PDMS slab was gently removed from the Si/SiO2 substrate, leaving behind the InAs NRs.
Вот они бы ещё комплементарную пару собрали - цены бы им небыло! Интересно как себя ведут полоски p-InAs.
Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь
Перст-дайджест В новом выпуске бюллетеня «ПерсТ»: Механизмы механо-бактерицидного действия наноструктурных поверхностей. Кубан и кубаноиды. Оптический гетеродин для измерения времени сверхкоротких импульсов. Трещать по швам правильно: однонаправленный разрыв метаматериала.
Спинтроника и iPod
В.В.Уточникова В 1988 году Альберт Ферт и Петер Грюнберг независимо друг от друга обнаружили, что электросопротивление композитов, составленных из чередующихся слоев магнитного и немагнитного металла может невероятно сильно меняться при приложении магнитного поля. В течение десятилетия это, казалось бы, эзотерическое наблюдение революционным образом изменило электронную промышленность, позволяя накапливать на жестких дисках все возрастающий объем информации.
ДНК правит компьютером
Бидыло Тимофей Иванович Наиболее вероятно, что главным революционным отличием процессоров будущего станут объемная (3D) архитектура и наноразмер составляющих, что позволит головокружительно увеличить количество элементов. Сегодня кремниевые технологии приближаются к своему технологическому пределу, и ученые ищут адекватную замену кремниевой логике. Клеточные автоматы, спиновые транзисторы, элементы логики на молекулах, транзисторы на нанотрубках, ДНК-вычисления…
Будущее техники отразилось в идеальном нанозеркале
Кушнир Сергей Евгеньевич Свыше 99,9% падающего излучения отражает новое зеркало, построенное физиками США. А ведь толщина его составляет всего-то 0,23 микрометра. Специалисты говорят, что новинка способна улучшить параметры многих компьютерных устройств, где применяется лазерная оптика.
Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.
Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.
Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся
в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.