Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1. Начальная стадия формирования колец Лизеганга.
Рис.2.«Летающая тарелка» в желе.
Рис.3.Опалесценция капли раствора AgNO3.
Рис.4.Выброс из кольца Лизеганга.
Рис.5.
Рис.6.
Рис.7.
Рис.8.

Кольца Лизеганга

Ключевые слова:  Интернет-олимпиада, кольца Лизеганга, учителю, школьные опыты

Автор(ы): Медведева Светлана Юрьевна

Опубликовал(а):  Шушарина Анастасия Леонидовна

02 ноября 2010

Огромную роль в наносистемах играют процессы самоорганизации. Они позволяют контролируемо получать молекулярные структуры с заданной пространственной конфигурацией и свойствами. Одним из примеров самоорганизации в химических системах являются периодические структуры из концентрических окружностей.

Эти структуры впервые были получены в 1896 г. немецким химиком Р. Лизегангом, который экспериментируя с фотохимикатами, обнаружил, что если капнуть ляписом {Прим. ред.: аптекарский сплав солей - нитрата калия и нитрата серебра, используемый для дезинфекции, "прижигания" ран, как известно из классической литературы, вспомните Базарова :-) } на стеклянную пластину, покрытую желатином и содержащую хромпик {Прим. ред.: содержит хромат - ион, точнее, изополихроматы}, то продукт реакции, выпадая в осадок, располагается на пластинке концентрическими окружностями. Лизеганг увлекся этим явлением и почти полвека занимался его исследованием.

Открытое явление нашло практическое применение при изучении различных процессов в физике и химии, в прикладном искусстве, кольца Лизеганга использовали для украшения различных изделий с имитацией яшмы, малахита, агата и др. Лизеганг также предложил технологию изготовления искусственного жемчуга.

Возможный физический механизм, объясняющий образование структур Лизеганга, был впервые предложен Оствальдом в 1987 году [2]. Он основан на предположении о периодическом возникновении пересыщения в пространстве и времени и его влиянии на скорость зарождения твердой фазы. Оствальд позднее предложил механизм «обострения» осадка ("Ostwald ripening") – растворение малых и рост больших частиц [3]. Эти два механизма в настоящее время лежат в основе альтернативных подходов к теоретическому объяснению осадочных структур.

Описание эксперимента.

Цель данного опыта: показать в действии явление самоорганизации в химической системе.

В стакан налить 30 мл дистиллированной воды (с солесодержанием 4 мг./л), добавить 0,015 г хлорида натрия и 1,5 г гранул пищевого желатина и оставить в холодильнике на одни сутки, для того, чтобы желатин набух. Осторожно нагреть смесь до 60°С, слабо помешивая. После того, как желатин образует однородный раствор, вылить его в чашку Петри и поставить застывать в холодильник. Приготовить концентрированный раствор нитрата серебра (концентрация 0,9 моль/л): в 1 мл дистиллированной воды растворить 0,153 г. нитрата серебра и несколько капель этого раствора капнуть на поверхность желатина в чашке Петри. В местах контакта растворов хлорида натрия и нитрата серебра, начал выпадать осадок хлорида серебра, который и образовал структуры похожие на «годовые кольца дерева».

Результаты.

В ходе проведения опыта были получены ярко окрашенные кольца Лизеганга, разнообразная окраска которых объясняется оптической активностью соединений серебра (рис. 5, 6, 7, 8). В начальный момент времени, когда капля раствора только коснулась желатина, раствор в капле был прозрачный, но затем наблюдается опалесценция (рис. 1,3) капли в результате выпадения коллоидных частиц хлорида серебра. В ходе постепенной диффузии раствора нитрата серебра получается структура, напоминающая НЛО (рис. 2).

В ходе проведения работы было обнаружено явление выброса части раствора из кольца Лизеганга. Возможно, из-за осмотического повышения давления в областях структуры происходит разрыв оболочки и выброс части раствора из колец Лизеганга (рис. 4).

При более низких концентрациях (<0,9 моль/л) структура получается более плоской, чем при более высоких концентрациях, при этом, концентрические окружности с осадком образуют достаточно большие по ширине полосы (сравнить рис. 5 и 6), окраска которых становится более равномерною и менее интенсивною. На рис. 5 заметно движение жидкой фазы во внутренней части структуры Лизеганга.

Использованная литература.

  1. Полежаев А.А. Теория структур Лизеганга.
  2. Ostwald W. Lehrbuch der Allgemeinen Chemie (Engelmann, Leipzig, 1897).
  3. Kahlweit M. Adv. Colloid Interf. Sci. 5 (1975) 1.


В статье использованы материалы: Интернет-олимпиада


Средний балл: 10.0 (голосов 3)

 


Комментарии
Рисунок 3 как лунный камень.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Тримезиновая кислота- молекулярное разрешение на воздухе
Тримезиновая кислота- молекулярное разрешение на воздухе

Наносистемы: физика, химия, математика (2024, Т. 15, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-4
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 3)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-3
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2024, Т. 15, № 2)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-2
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2024 году
коллектив авторов
29 – 31 мая пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.