Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Схема энергетических уровней лантанидов
Рис. 2. Спектры люминесценции соединений некоторых РЗЭ
Рис. 3. Европиевая люминесценция пятидесяти евро
Рис. 4. Up- и down-конверсия может увеличить эффективность солнечных батарей
Рис. 5. Использование up-конверсии
Рис. 6. Устройство органического светодиода
Рис. 7. Структура Eu(hfa)3(dmtph)
Рис. 8. Выбор оптимального дополнительного лиганда
Рис. 9. Визуализация с помощью композита комплекс РЗЭ - антитело
Рис. 10. Люминесценция червя Caenorhabditis elegans

Люминесценция комплексов лантанидов: основные применения

Ключевые слова:  люминесценция, периодика, РЗЭ

Автор(ы): J.-C. G. Bunzli

Опубликовал(а):  Уточникова Валентина Владимировна

04 октября 2010

Как ни скучно снова начинать статью со слов, что практически все лантаниды при правильном подборе лигандов могут обладать люминесценцией, важно напомнить, что по характеру этой люминесценции их можно разделить на две группы: люминесцирующих в видимой области и в ближнем ИК диапазоне. Набор длин волн люминесценции каждого из ионов РЗЭ сохраняется вне зависимости от выбора лиганда, и на Рис. 2 показаны характерные спектры люминесценции комплексов этих ионов. Однако несмотря на это выбор лиганда очень важен: именно от него зависит,

  • будет ли комплекс обладать эффективной люминесценцией, или же передача энергии с лиганда на центральный ион будет незначительной,
  • будет ли комплекс стабилен во времени при использовании его в реальных устройствах,
  • будет ли он безопасен, если использовать его для биологических применений,
  • будет ли растворим в том растворителе, выбор которого диктует возможное применение
  • и так далее.

Применение комплексов РЗЭ уже сегодня довольно заметно: достаточно отметить, что красное свечение, которое мы видим, светя на купюры ультрафиолетовым светом, - это люминесценция комплексов европия. Впрочем, как раз в этом случае требования к комплексам довольно просты, и, поскольку потенциал этих соединений гораздо шире, множество ученых пытаются развивать и другие применения. Одним из таких применений является переизлучение света в нужном диапазоне. Взять, например, солнечные батареи, которые по представлениям многих ученых являют собой источник энергии будущего. Наиболее часто используемые в качестве активных элементов полупроводники – кремний и оксид титана – имеют запрещенные зоны шириной 885 нм и 385 нм. Это обозначает, что только небольшая часть солнечной энергии способна преобразовываться в электричество. Возможно ли заставить и остальную часть солнечного спектра служить на благо человечеству? Да, если использовать up-и down-переизлучатели (конвертеры)! При этом соединения, например, те же комплексы лантанидов, будут поглощать свет в ранее не используемом диапазоне, а излучать его в диапазоне, который полупроводниковое ядро уже способно поглощать и перерабатывать в электричество.

Таким образом можно повысить эффективность работы кремниевой солнечной батарейки с 31% до 49%! При этом для up-конверсии используются комплексы эрбия, гольмия, тулия, палладия и платины, а для down-конверсии – европия, тербия и иттербия. На Рис. 5 показана схема работы такого композитного солнечного элемента, а также ТЕМ-изображение композитных наночастиц. С использованием тулиевых и иттербиевых соединений удается получить свет с длиной волны 350 нм и 460 нм, который уже может поглощать диоксид титана.

Однако одним из наиболее долго развиваемых направлений использования комплексов РЗЭ все-таки является их использование в качестве эмиссионных слоев органических светодиодов (ОСИД). Это связано с тем, что эти соединения относятся к фосфоресцирующим, а не флуоресцирующим, а значит, обладают квантовым выходом люминесценции до 100%. Здесь, однако же, важно, чтобы энергия не только эффективно передавалась с лиганда на центральный ион, но и не переносилась затем обратно. Для этого разница между триплетным уровнем лиганда и уровнем РЗЭ, на который происходит передача энергии, должна лежать в диапазоне 2500-3500 см–1. Кроме того, нужно не допускать гашения люминесценции, которое происходит за счет колебания групп в определенном диапазоне частот. В первую очередь, это О–Н группы, например, воды, то есть важно получить координационно-насыщенные соединения, которые не будут содержать в своем составе координационную воду. Одним из наиболее используемых для этого применения классом соединений являются бета-дикетонаты РЗЭ, которые обладают:

  • эффективной люминесценцией,
  • летучестью, что делает простым нанесение их тонких пленок,
  • широкой возможностью варьирования их свойств, проистекающей из возможности варьирования дополнительного лиганда.

На Рис. 8 показан один из таких комплексов европия – гексафторацетилицетонат. Варьируя дополнительные нейтральные лиганды, как показано на Рис. 9, можно выбрать тот комплекс, эффективность люминесценции которого будет наиболее высока. И наконец, важным применением является биологическая визуализация, где важна люминесценция в ближнем ИК диапазоне. Высокая эффективность люминесценции, растворимость в воде и нетоксичность конечного продукта – вот основные требования к выбору лиганда в данном случае. Добавление антител к определенному антигену позволяет визуализировать именно требуемый объект – например, червя Caenorhabditis elegans :)



Средний балл: 10.0 (голосов 5)

 


Комментарии

Валентина Владимировна!
Интересно!
Просьба к Вам помочь получше разобраться нам - школьникам и лично мне в люминисценции.
Как это сделать? Подскажите.
Для начала, люминесценция пишется через "е" в третьем слоге :)

Если желающих много, могу попробовать написать небольшую статью о природе люминесценции. А вообще, прочитайте статью в энциклопедии, там написано довольно неплохо :)

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Лед и пламень: эшелоны моноатомных ступеней
Лед и пламень: эшелоны моноатомных ступеней

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.