Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1 Светлопольное (а) и темнопольное (б) ПЭМ изображения ионно-плазменного конденсата углерода; разрешение атомных плоскостей (000.2) наночастиц графита в матрице углерода.
Рис. 2 Электронограммы (а, б) и ПЭМ изображения (в, г) пленок CuInSe2, синтезированных последовательным нанесением слоев на поверхность (001) монокристалла NaCl из двухкомпонентной паровой фазы при термическом испарении (а, в) и методом магнетронного распыления (б, г). Двухдоменная субструктура CuInSe2 с ориентацией доменов относительно подложки: (010),[001]CuInSe2II(001),[100] и [010]NaCl.
Рис.3 Нанокристаллиты ГА на ПЭМ изображениях профиля (а) утоненного слоя (более 2000 нм) и тонкого (~70 нм) слоя (б); прямое разрешение в рефлексе (000.2)
Рис.4 ПЭМ разрешение атомных плоскостей на межфазных границах LiNbO3/Ag (а), и LiNbO3/Si (б)
Рис.5 ПЭМ разрешение атомных плоскостей в нанокристаллах палладия и иттрия

Наноструктурирование ионно-плазменных конденсатов

Ключевые слова:  Конденсат, периодика

Автор(ы): Белоногов Е. К.

Опубликовал(а):  Доронин Федор Александрович

27 сентября 2010

Введение

Дизайн низкоразмерных материалов – разработка подходов, методов воздействия на структуру (инженерия дефектов субструктуры), фундаментальных основ создания компактных и (или) дискретных конденсатов с наноразмерными неоднородностями морфологии (индустрия наносистем). Фундамент успеха современного материаловедения - размерный эффект, делающий свойства низкоразмерных структур отличными от свойств объёмных материалов. Размерный эффект изменяет энергетический спектр электронной системы и большинство физических свойств тонкопленочных материалов. В современных и перспективных проектах материаловедения (нано-, микро-, оптоэлектроника) ведущую роль играют тонкопленочные структуры - двумерные объекты (гетероструктуры, мультислои, сверхрешётки), а также одно- и нуль-мерные (квантовые нити и точки). Фундаментальная проблема материаловедения - стабилизация физико-химических свойств нанообъектов. Недостаток информации о законах морфологического развития и структурирования нанодисперсных покрытий сдерживает применение многокомпонентных слоев, для производства изделий в тонкопленочном исполнении. Актуальность исследования закономерностей наноструктурирования при ассистирующем ионно-плазменном воздействии при конденсации, обусловлена потребностями фундаментальной науки и реальной перспективой создания нового класса материалов с улучшенными или принципиально новыми свойствами.

Инженерия субструктуры ионно-плазменных конденсатов

Технология создания высокой удельной поверхности (открытая макро и микропористость) вакуумных конденсатов за счет столбчатого характера получает дополнительные возможности с формированием наноструктурных элементов второй фазы; сущность изобретения[1,2] заключается в том, что в состав покрытия входит углерод в виде наночастиц (фуллерены и нанотрубки). Композиционное (оксид алюминия – углерод) покрытие с высокой открытой пористостью нанесено на алюминиевые фольги методом ВЧ-магнетронного распыления.

Дисперсные включения (нанокристаллы графита) распределены в дисперсной среде (матрица углерода) см. рис. 1 а, б. Развитая поверхность проводящей фазы – наноструктуры (углеродные нанотрубки и наноленты (рис. 1в)) в пористой матрице оксида Al. Т. е. развитие эффективной поверхности ионно-плазменного конденсата происходит за счет наноструктурированного распределения графита в аморфной матрице.

Синтез сложного соединения реализован [3] последовательной конденсацией двухкомпонентных слоев (Cu-Se и In-Se). Два технологических подхода (термическое испарение и магнетронное распыление) формируют ориентированные слои CuInSe2, которые идентичны по фазовому составу и ориентации кристаллитов, но субструктура ионно-плазменного конденсата (сравни рис. 2 в, г), характеризуется большей дисперсностью, дефектностью и размытием текстуры. Увеличение дисперсности и дефектности конденсатов – эффект плазмы(результат бомбардировки растущего слоя электронами плазмы).

Чувствительность структуры и фазового состава пленок гидроксиапатита (ГА) к воздействию плазменного разряда обнаружена [4-6] когда над зоной эрозии мишени были синтезированы однофазные пленки нанокристаллического гидроксиапатита со стехиометрией Ca10(PO4)6(OH)2 и компактной структурой, а за пределами зоны эрозии - аморфно-нанокристаллические и аморфные пленки, которые в результате различного энергетического воздействия (отжиг, воздействия электронным пучком, импульсного облучения некогерентным ЭМИ формируют нанокрикристаллы ГА.

Прямое разрешение атомных плоскостей нанокристаллитов (рис. 3) демонстрирует предельные размеры (~ 20нм) кристаллитов ГА, как в латеральном, так и в нормальном направлениях роста слоя.

ВЧ магнетронным распылением монокристаллической пластины ниобата лития на поверхностях кремния и фторфлогопита синтезированы пленочные слои, дисперсность и морфология которых, также зависит от геометрии расположения подложки относительно зоны эрозии мишени [7]. Над зоной эрозии формируются однофазные поликристаллические пленки ниобата лития с двухосной и одноосной текстурой соответственно на поверхностях фтофлогопита и окисленного кремния (рис. 4).

Слоистый характер роста наиболее свойственен пленкам с двухосной текстурой, а интенсивное развитие рельефа за счет селективного роста – одноосной.

Ионно-плазменные конденсаты Pd-ат.8%Y на поверхностях разной пористости (от прессованных из порошков соответственно микронного и субмикронного размера до монокристаллических) формируют разную толщину слоя Pd-Y (от 2 до 6мкм), объясняется конденсационно-стимулированной поверхностной диффузией атомов конденсата в пористые подложки. Заполнение пор и насыщение приповерхностного слоя пористой подложки конденсируемым материалом происходит на глубину в несколько микрометров. Происходит модификация поверхностного слоя - пористая матрица подложки насыщается материалом конденсата, который формирует нанокристаллическую структуру (рис.5).

Это открывает принципиальную возможность модификации развитой поверхности, закрытия пор и микротрещин подложки нанесением соответствующей толщины слоев ионно-плазменных конденсатов (сплавов на основе палладия). Плазменное ассистирование обеспечивает резкое увеличение подвижности адатомов на подложках с высокой удельной поверхностью (открытой пористостью). Замеченный эффект – основа инженерии нанокристаллических селективных фильтрующих мембран на пористых подложках.

Эффекты ионно-плазменного ассистирования

В несбалансированных магнетронных распылительных системах отклонение от аксиальной симметрии рабочих полей (электрическое, магнитное) создает условия для бомбардировки растущего слоя электронами либо ионами плазмы. Ионный пучок инициирует конденсацию плотных, высокотвердых и износостойких покрытий на основе оксидов, нитридов, карбидов и других соединений с высокой адгезией на межфазных границах. Функциональные свойства покрытия достигаются созданием градиентной структуры ионно-плазменного конденсата. Электронный пучок инициирует диффузию, синтез, фазовые превращения, эпитаксиальный рост, увеличение дисперсности, порообразование, развитие рельефа.

Ионно-плазменное ассистирование инициирует формирование структуры с рекордно малыми размерами кристаллитов и их границ в сравнении с другими методами создания наноструктурных материалов. К размерным эффектам следует отнести формирование аморфных нанослоев и монокристаллических вискеров в композиционных конденсатах. В ионно-плазменных конденсатах, наносимых при невысоких Тп и высокой плотности плазмы выделение второй фазы сопровождается расслоением пленки по вертикали (столбчатый рост); с увеличением Тп и снижением плотности плазмы происходит слоевой рост. Электронная бомбардировка препятствует слоевому росту пленки. Эффект плазмы через ослабление межфазного взаимодействия пленка-подложка в результате бомбардировки электронами проявляется в реализации дополнительных двухосных текстур, многоориентационного зарождения при выделении второй фазы и, как следствие, увеличении дисперсности пленки.

Для обозначения главных закономерностей ионно-плазменного ассистирования достаточно представить последовательность элементарных процессов в системе плазма-конденсат, которые проходят по схеме: 1) Электронная и ионная бомбардировка, ионизация, некогерентное ЭМИ; 2) Уменьшение порога дефектообразования; 3)Генерация вакансий и междоузельных атомов; 4) Наноструктурирование дискретных и компактных конденсатов.

В ближайшее время ожидается расширение спектра сложных ионно-плазменных покрытий и градиентных структур с наноструктурными элементами: кластеры, нанотрубки, фуллерены, квантовые нити и точки. Показана принципиальная возможность селективного заполнения нанопор металлами и их кластерный характер в треках тяжелых ионов [8], автоэмиссионные свойства углеродных нанотрубок и SiC вискеров, синтезированных с использованием частиц Ni, осажденных в ионных треках SiO2 [9].

Список использованных источников

  1. Иевлев В.М., Белоногов Е.К. и др. Патент № 2123738, Н 01 С 9/00, 9/04, (1997)
  2. Иевлев В.М., Тураева Т.Л., Белоногов Е.К. и др. ФХОМ, 1, 104, (1998)
  3. Иевлев ВМ, Белоногов Е.К., Харин А.Н. Неорганические материалы, 41, 1, 15, (2005)
  4. Баринов С.М., Белоногов Е.К. и др. ДАН, 412, 3, 347, (2007).
  5. Иевлев В. М. и др., Конденсиров. среды и межфазные границы, 9, 3, 209, (2007)
  6. Иевлев В.М. и др. Физика и химия стекла, 34, 798, (2008)
  7. Иевлев В.М., Калинников В.Т., Белоногов Е.К., Костюченко А.В.
  8. Демьянов С Е, Петров А В, Белоногов Е. К., Изв. РАН, сер. физ., 72, 9, 1262, (2008)
  9. А.В. Окотруб и др., Российские нанотехнологии, 4, № 9 –10, (2009), www.nanoru.ru



Средний балл: 8.7 (голосов 7)

 



Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Инопланетный сыр
Инопланетный сыр

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.