Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. Устройство микросуперконденсатора на основе углеродных наночастиц. a. Модель поперечного сечения углеродной наночастицы. b. TEM-изображение такой частицы с. Схема расположения элементов суперконденсатора. d-e. Оптическое и SEM изображения электродов с нанесёнными углеродными наночастицами, соответственно.
Рисунок 2. Электрохимические характеристики полученного микроустройства. a. Циклические вольтамперограммы устройства в 1М Et4NBF4/безводный пропилен карбонат при различных скоростях развертки потенциала. b. Зависимость тока разрядки от скорости развертки потенциала (вплоть до 100 В/с наблюдается линейная зависимость).
Рисунок 3. Сравнение микросуперконденсаторов с другими устройствами-истониками энергии. Показательным представляется сравнение характеристик суперконденсаторов, полученных по одной и той же методике, но с различными формами углерода: активированного угля и углеродных наночастиц с луковицеподобной структурой.
Рисунок 4. Сравнение зависимостей удельной энергоёмкости от удельной мощности таких привычных источников энергии, как обычные конденсаторы, суперконденсаторы и батареи с полученными в работе микроустройствами.

Высокоёмкие суперконденсаторы на основе углеродных многослойных наночастиц

Ключевые слова:  наноалмаз, наночастицы, суперконденсатор

Опубликовал(а):  Смирнов Евгений Алексеевич

21 сентября 2010

Принцип работы суперконденсаторов заключается в том, что энергия запасается между двумя близко расположенными слоями, которые имеют противоположные заряды. Такой тип конденсаторов может используется для питания различных гибридных электромобилей, портативных электронных устройств и т.д. Обладая высокой скоростью заряда / разряда, а также способностью выдерживать миллионы таких циклов, электрохимические конденсаторы представляют собой связующее звено между батареями, которые обладают высокой плотностью запасаемой энергии, но малой скоростью разряда, и обычными конденсаторами, которые имеют малую плотность запасаемой энергии и высокую скоростью разряда. По ряду причин (в частности, встраивание в интегральные схемы, медленное протекание диффузионных процессов и т.д.) при разработке суперконденсаторов используют наноматериалы.

Группа французских и американских учёных недавно опубликовала работу, в которой предложила использовать углеродные многослойные частицы, которые легко получаются в макроколичествах при обработке порошка наноалмазов при температуре 1800 oC и формой своей напоминают луковицу, в качестве материала электродов суперконденсатора (Рисунок 1). Далее методом электрофоретичекого осаждения полученные углеродные наночастицы диаметром 6-7 нм иммобилизировали на поверхности золотых контактов конечного устройства. Затем авторы работы провели исследования электрохимического поведения созданного суперконденсатора (Рисунок 2) и сравнили его характеристики с характеристиками суперконденсатора, созданного по аналогичной методике, но только с использованием обычного активированного угля (Рисунок 3). Оказалось, что указанное выше «луковицеподобное» структурирование значительно влияет на электрохимическое поведение системы, в частности, более чем в 25 раз уменьшается характерное время релаксации (τ0), а рабочий диапазон скоростей разряда увеличивается до 200 В/с без значительного снижения удельных значений ёмкости и запасённой энергии. Сравнение с другими видами источников тока и конденсаторов приведено на Рисунке 4.

Авторы работы понимают, что необходимы некоторые дополнительные научные и технологические изыскания для оптимизации работы предложенного суперконденсатора, однако области его потенциального применения, по мнению учёных, огромны: беспроводные сети сенсоров, биомедицинские импланты, активные метки радиочастотной идентификации (RFID), встроенные, интегрированные микросенсоры и т.д.




Комментарии
Андрей, 21 сентября 2010 15:00 
Вот и Gogotsi статью на НМ поместили. Уже давно вышла ведь
Gromolyot, 21 сентября 2010 23:00 
Не вполне логичен переход к термину "электрохимический", ВАХ на рисунке 2 назвать электрохимическими можно весьма условно.
Смирнов Евгений Алексеевич, 22 сентября 2010 00:42 
в английской версии electrochemical characteristics...
Dialog Expert DialogExpert, 06 июня 2012 17:35 
«ВЕДРО ДЛЯ ЭЛЕКТРИЧЕСТВА»

Конструкторский коллектив, возглавляемый инженером Овчаровым В.В. разработал конструкцию энергонакопителя электрического тока большой удельной емкости. Конструкция накопителя электрической энергии основана на общеизвестных физических принципах, обладает высокой технологичностью в производстве и низкой себестоимостью. В конструкции применяются экологически чистые материалы, не требующие специальной утилизации. Конструкция может быть любого размера, формы и является хорошим конструкционным материалом способным нести механические нагрузки (возможны варианты монолитнотвердый или тканеобразный) На основе стандартного оборудования разработана универсальная технология производства элементов питания различного назначения от микро до макро размера. http://energ....narod2.ru/

Характеристики «НЭО»:
• Зарядное напряжение: 50-600В. (в зависимости от источника)
• Зарядный ток 1-1000А. (в зависимости от источника)
• Число циклов заряда-разряда: >10 6 (более 20лет гарантированной службы)
• Время зарядки зависит от источника, возможна мгновенная зарядка (импульс).
• Напряжение ячейки: <600В. (без использования последовательного соединения)
• Разрядное напряжение 12-36В. (в зависимости от источника потребления)
• Разрядный ток: 1-1000А. (в зависимости от источника потребления)
• Время разрядки зависит от источника потребления, возможна мгновенная разрядка (импульс).
• Из-за конструктивных особенностей при зарядке и разрядке конструкция не нагревается.
• Интервал рабочих температур: от -70 С0до +250 С0 (при минусовых температурах удельная ёмкость возрастает).
• Удельная энергия – ~10 3 - 10 5кДж/кг 0,5-28кВт-час/кг (напряжение в ячейке 20-100В)
• Удельная мощность - ~10 3 - 10 5кВт/кг (развивает изделие весом 1кг)
• Ток утечки в A: 10-6 - 10-9 (ток саморазряда не более 3% в год, что создает возможность длительного хранения)
• Плотность изделия – 1,5-3 кг/дм3 (соотношение размера и веса) http://www.a.../energo.php
http://fzp.su/?page_id=419

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Скорлупа
Скорлупа

NT-MDT Spectrum Instruments проводит мастер-класс по измерениям АСМ 30-31 марта в Москве.
В рамках VIII Ежегодной Конференции Нанотехнологического Общества России, которая будет проходить в Москве 30-31 марта, NT-MDT Spectrum Instruments проведёт мастер-класс по измерениям по методу АСМ на приборе Solver Next с контроллером для работы в нерезонансной осцилляционной моде HybridTM.

День 1. Регистрация на Олимпиаду, символика, открытие
Открылась XI Всероссийская Интернет - олимпиада по нанотехнологиям "Нанотехнологии - прорыв в будущее!". Участники поселены, зарегистрированы, написали химию и физику. Жаль, погода подкачала. Снег и дождь... Но обещают солнце и новые научные достижения.

В ИОХ РАН состоялся круглый стол по научно-техническому сотрудничеству между Россией и Индией
27 марта, в понедельник, в Институте органической химии им. Н.Д. Зелинского РАН состоялось заседание Круглого стола для обсуждения путей расширения российско-индийского сотрудничества в областях науки и техники.

Научно-исследовательская работа студентов в 7 семестре. Тезисы докладов на студенческой научной конференции.
Сафронова Т.В.
Научные конференции студентов на факультете наук о материалах Московского государственного университета имени М.В. Ломоносова (ФНМ МГУ) – являются многолетней традицией. Зимняя конференция в 7 семестре - как контрольная точка для студентов, неотрывно от учебного процесса выполняющих квалификационную работу бакалавра.

XIX Весенняя научная школа МГУ

Разыскиваются юные технари, химики и математики!
Во время весенних каникул с 27 марта по 2 апреля в Подмосковье пройдет Весенняя школа МГУ "ЛАНАТ". В программе школы практикумы по математике, химии, биологии, программированию, электронике.

Измерение неоднородности оптических свойств наночастиц PbSe в растворе при помощи двумерной фемтосекундной спектроскопии
Баранов Дмитрий Александрович
Заметка о статье в которой удалось измерить неоднородность оптических свойств квантовых точек селенида свинца в растворе методом двумерной оптической спектроскопии и увязать эту неоднородность с распределением квантовых точек по размерам.

Проектная работа

Сегодня становится все более популярной так называемая проектная работа школьников, однако на этот счет есть очень разные мнения. Мы были бы признательны, если бы Вы высказали кратко свое мнение по этому поводу путем голосования. Заранее благодарны!

Закон о реформировании РАН

В Совместном заявлении Совета по науке и членов Общественного совета Минобрнауки предлагается отозвать нынешний проект закона о "реформировании" РАН из Государственной думы и вернуться к его рассмотрению с соблюдением процедуры утвержденной постановлением Правительства РФ №851 от 25.08.2012, и указом Президента РФ №601 от 07.05.2012, которая была грубо нарушена. Мы предлагаем Вам высказать (анонимно) свое мнение в данном опросе, чтобы его статистические результаты были видны всем участникам опроса и общественности.

Проектная деятельность с точки зрения учителя

Это специальный опрос для учителей и представителей школ, которых мы просим оценить значимость предлагаемых материалов, мероприятий и перспективы их дальнейшего совершенствования на пути эффективного взаимодействия школ и ВУЗов. В опросе могут также участвовать школьники, студенты и аспиранты, особенно со своими критическими замечаниями в комментариях.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.