Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Многофункциональное оптическое волокно умеет воспринимать и генерировать давление и звуковые волны. (Фото Research Laboratory of Electronics at MIT/Greg Hren.)
Волокна разной формы могут издавать звуки разными способами.(Иллюстрация MIT)

Разработано многофункциональное оптоволокно, способное говорить и показывать

Ключевые слова:  оптоволокно

Опубликовал(а):  Доронин Федор Александрович

14 июля 2010

Источник: Компьюлента. Автор: Дмитрий Целиков.

Сотрудники Массачусетского технологического института (США) разработали оптоволокно, которое не только проводит и модулирует свет, но и вызывает и воспринимает изменения давления.

Многофункциональные волокна могут применяться в производстве различных типов датчиков и «умных» тканей, способных модулировать оптический сигнал.

С помощью интеграции тепло- и светочувствительных материалов научная группа под руководством профессора Йоэля Финка изготовила волокна, которые выполняют роль простых датчиков. К ним добавили новый уровень функциональности посредством слоя пьезоэлектрического материала. Он преобразовывает электрические сигналы в механические изменения и наоборот, что и позволяет волокну чувствовать изменение давления.

Главная сложность в производстве такого волокна заключается в необходимости правильной укладки слоёв. Нужно было подобрать материалы, которые не только обладают подходящими свойствами, но ещё и плавятся при одинаковой температуре. Г-ну Финку и его коллегам потребовалось несколько лет на разработку процесса формирования заготовки, которая затем нагревается и превращается в тоненькое волокно из полимеров и металлов.

Диаметр заготовки пьезоэлектрического волокна составляет 40 мм. Она содержит полимер, который при остывании формирует высококачественный пьезоэлектрический кристалл, и поликарбонатный материал, вязкий и проводящий одновременно. При нагревании и растягивании оба компонента меняют свои масштабы с миллиметров на нанометры с одинаковым коэффициентом.

«Функциональная интеграция подразумевает интеграцию очень разных материалов, и то, что им удалось сделать, — большой шаг вперёд», — говорит Ритеш Агарвал, профессор материаловедения и прикладных наук из Пенсильванского университета (США). Его особенно поразило то, что пьезоэлектрический слой сохраняет свои свойства после растягивания: исследователи МТИ смогли создать такие условия, при которых кристалл остаётся в целости и сохранности.

Конечный продукт содержит сердцевину, способную проводить свет, пьезоэлектрический слой и электроды, передающие электрические сигналы пьезоэлектрическому слою и обратно. Под воздействием тока этот слой вызывает сокращения волокна, что может быть использовано, например, для создания акустических волн.

Кроме того, волокно имеет отражающий слой, который выполняет роль своеобразного оптического переключателя. Он взаимодействует со световой волной определённых длин, которые обусловлены толщиной слоёв. Если электрический импульс заставит «зеркало» сократиться, цвет, с которым будет взаимодействовать слой, изменится. Вставьте волокно в одежду — и она превратится в живой телевизор!

Да что одежда — любая поверхность может стать экраном. Причём говорящим: не забываем о способности волокна создавать звуковые волны.

Йоэль Финк считает, что его детище ждёт большое будущее. Скажем, если волокно заткать в коврик у двери, оно сможет посчитать количество человек, прошедших по нему. Если его внедрить в композиционные материалы конструкционного назначения, оно сообщит о трещинах задолго до того, как они станут опасными. Но самая заманчивая область применения новинки — биомедицина. Диаметр волокон меньше микрометра, так что их можно отправить внутрь сосудов и органов для мониторинга сердечного ритма, кровотока, биомаркеров и т. д. Способность волокон проводить инфракрасное излучение и звуковые сигналы позволит им заменить ультразвуковое исследование, электрокардиографию и химическую спектрометрию.

Результаты исследования изложены в журнале Nature Materials.

Подготовлено по материалам Массачусетского технологического института.


Источник: Компьюлента



Комментарии
Gromolyot, 14 июля 2010 12:54 

Какое зеркало? Куда сократится? "цвет, с которым будет взаимодействовать слой" - это что?
Излучение звуковой волны (в слышимом допазоне) микронным волокном - отдельная проблема.
Тот ли источник Компьюлента который здесь уместно цитировать?
Если вы хотите что-то изложить - излагайте. Но
перепечатывать со слов журналистов, вольно
обращающихся с терминалогией, и не только -
увольте.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Единичные молекулы нафталина
Единичные молекулы нафталина

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

В Москве начинается MAPPIC - 2019
14-15 октября 2019 года состоится I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019)

РИА Новости: Нобелевскую премию по химии присудили за разработку литий-ионных батарей
РИА Новости: Джон Гуденаф, Стенли Уиттингхем и Акира Йошино стали лауреатами Нобелевской премии в области химии за 2019 год за разработку литий-ионных батарей.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



Новое видео 2019 года: подробнее тут вы найдете множество интересного.
 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.