Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Фотодиоды и фотопроводники: механизмы разделения зарядов и структуры и конфигурации устройств.
Структура и характер роста самоупорядоченных нанокристаллов SiGe.

Квантовые точки: маленькие, да удаленькие

Ключевые слова:  квантовые точки, Наноазбука, периодика

Автор(ы): В.Уточникова

Опубликовал(а):  Уточникова Валентина Владимировна

10 июня 2010

По ряду причин полупроводниковые квантовые точки не так явно представлены в истории нанотехнологий, во всяком случае, по сравнению о сканирующей туннельной микроскопией, молекулярно-лучевой эпитаксией или углеродными нанотрубками. Однако развитие квантовых точек происходит по крайней мере не меньшее время, чем каждого из этих гигантов нанотехнологий, и является целью такого же количества исследований. И хотя в них, возможно, отсутствует природная эстетическая геометрия, найденная в нанотрубках (и фуллеренах, и графен), сам факт того, что кантовые точки могут быть получены из различных элементов и приобретать различных формы и размеры, во многих дает им преимущество над узкопрофильными углеродными материалами. Это отражается в числе фундаментальных исследований, которые можно выполнить с помощью квантовых точек, ширине потенциальных применений этих материалов - и, конечно, в патентных спорах.

Обобщая, можно выделить две группы квантовых точек: химики предпочитают "мокрые" методы для получения относительно больших объемов коллоидных квантовых точек, которые обычно пассивируются органическими молекулами на поверхности. Физики же предпочитают работать с эпитаксиальными квантовыми точками или самоупорядоченными КТ на подложке. Также можно получить квантовую точку, поймав отдельную молекулу или наночастицу между двумя электродами, присоединяя электроды к нанотрубке или графену или изменяя уровень легирования монокристалла полупроводника. Еще большего разнообразия можно достигнуть за счет того, что, например, заключенная между электродами наночастица может быть металлической, ферромагнитной или сверхпроводящей.

Важные характеристики квантовых точек включают то, что уровни энергии, занимаемые носителями заряда, квантуются, подобно тому как происходит в молекулах и атомах, а растояние между валентной зоной и зоной проводимости растет с уменьшением их размера, что уменьшает длину вольны их люминесценции. Электрон-электронные взаимодействия также усиливаются, начинают наблюдаться одноэлектронные эффекты, такие как кулоновская блокада, и меняются химические свойства, такие как окислительно-восстановительный потенциал.

Изучение коллоидных квантовых точек началось в начале 1980-х годов, а Луи Брю (тогда сотрудник лаборатории Белла, а сейчас - университета Колумбии) даже был награжден первой Премией Кавли в области нанотехнологий в 2008 году за свои пионерские исследования в этой области. Они в течение многих лет широко использовались в биомедицинских применениях, и недавно исследователи открыли метод "включения-выключения" люминесценции квантовых точек. Позже оптические свойства квантовых точек для улучшения эффективности светодиодов получения более естественно света, и были исследованы возможности их применения в камерах, дисплеях и для солнечной энергетики. Основной задачей для всех компаний, имеющих дело с коллоидными квантовыми точками, является отказ от токсичных материалов, таких как кадмий.

Исследования в области эпитаксиальных квантовых точек явился действительно прорывом, который начался с изучения двумерных электронных газов в многослойных полупроводниковых устройствах, а затем продолжился экспериментами по квантовым нанопроволокам, и наконец в конце 1980-х годов завершился нульмерными структурами. Сам термин "квантовая точка" принадлежит Марку Риду, который ввел его в своей публикации в 1988 году.

Исследования в этой области активно продолжаются до их пор. Так, Герасимос Константатос и Эдвард Сарджент используют коллоидные квантовые точки и металлические наночастицы для детектирования фотонов (Рис. 1). Создание конкурентоспособных детекторов включает оптимизацию такого ряда факторов, как поглощение, время отклика и уровень шума.

Сильвано ди Франчеши с сотрудниками проводят эксперименты по самосборке кремний-германиевых квантовых точек на подложке из кремния (Рис. 2), поскольку для создания новых устройств для применений в электронике и спинтронике необходимо лучшее понимание поведения носителей заряда (в данном случае дырок) в таких квантовых структурах. Создание однофотонных излучателей является еще одной интенсивно развивающейся областью.

Но вне зависимости от того, как или для чего они получены, у квантовых точек в наноэлектронике явно более яркое будущее, чем было прошлое.



Средний балл: 10.0 (голосов 4)

 


Комментарии
Андрей, 11 июня 2010 01:14 
А когда наши фнм-овские статьи в Nature начнут перепечатывать на нанометре?
Напиши - перепечатаем. Статьи Синицкого - а работу у Трусова...
давайте ссылки - перепечатаем!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

3D-printing
3D-printing

Учёные МГУ предложили новый способ создания перовскитных солнечных элементов
Ученые факультета наук о материалах МГУ предложили новый способ создания перовскитных солнечных элементов. Результаты были опубликованы в журнале ACS Applied Materials & Interfaces в статье "From metallic lead films to perovskite solar cells through lead conversion with polyhalides solutions".

Опубликован механизм знаменитой реакции Зелинского. Получение бензола из ацетилена с помощью автокаталитического каскада на углеродных наночастицах
Российские исследователи показали, что карбеновые центры на зигзагообразных краях графеновых структур могут представлять собой альтернативную платформу для создания эффективных каталитических систем. В частности впервые был представлен механизм реакции Зелинского: тримеризации ацетилена с образованием такого важного продукта как бензол.

Подводятся итоги творческого конкурса «ЮниКвант»
На конкурс «ЮниКвант» для участия в профильной смене по био- и нанотехнологиям в ВДЦ «Океан» поступило более 100 заявок.

2019-nCoV: очередной коронованный убийца?
Анна Петренко
В статье рассказывается о коронавирусе 2019-nCoV — что мы знаем сегодня. А ведущие международные научные издательства предоставляют бесплатный доступ к новым статьям, посвященных изучению коронавируса

Дышать свободно: как воздухоочистители борются с вирусами
Ростех
В перечне помощников в борьбе с вирусом COVID-2019 – также воздухоочистители. Речь идет о системах очистки воздуха, которые работают на основе фотокатализа. Их фильтры способны справиться с 99% бактерий и вирусов, в том числе могут стать действенным способом борьбы со злополучным COVID-2019.

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2020 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.