Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Работающий прототип установки для обнаружения скрытых взрывчатых веществ

Cоздан уникальный детектор скрытых взрывчатых веществ

Ключевые слова:  гамма-кванты, детектор, ФИАН, фотоядерный метод

Опубликовал(а):  Палии Наталия Алексеевна

04 июня 2010


Российские физики из ФИАНа в сотрудничестве с учеными из ИЯИ РАН, НИИ ЯФ МГУ и ИФВЭ создали уникальный фотоядерный детектор скрытых взрывчатых веществ. Прибор может быть использован как для обнаружения взрывчатки в багаже авиапассажиров, контейнерах и прочих видах закрытой тары, так и в качестве мобильного детектора взрывчатых веществ для гуманитарного разминирования местности.

Руководитель проекта, кандидат физ.-мат.наук Валерий Раевский поясняет суть фотоядерного метода, лежащего в основе работы созданного прибора: "Если облучить закрытую тару высокоэнергичным пучком гамма-излучения, то на ядрах азота и углерода, входящих в состав взрывчатых веществ и природных наркотиков, будут образовываться изотопы бора (12B) и азота (12N). Эти элементы обладают очень короткими временами жизни, менее 20 мс, что позволяет отделить сигналы от их распада от сигналов других радионуклидов, возникающих в облученном веществе. Таким образом можно получить информацию, которая позволяет заподозрить присутствие взрывчатых веществ".
С помощью разработанной в ФИАНе запатентованной методики удается получить "портреты" облученных химических соединений. Сравнивая сигнал детектора с такими "портретами", удается не только выделить взрывчатку на фоне безобидных веществ, содержащих азот и/или углерод, но даже установить конкретный тип взрывчатого вещества.

"Гамма-кванты, используемые нами в качестве щупа, обладают очень высокой проникающей способностью. Это позволяет обнаруживать взрывчатые вещества, даже когда они скрыты протяженными слоями металлов, воды и грунта и т.п. Если сделать облучающий луч достаточно узким, то можно реализовать режим сканирования, а это позволит определять точное местоположение взрывчатого вещества и даже форму заряда", - комментирует Валерий Раевский.

Использование фотоядерного метода для обнаружения скрытых взрывчатых веществ было предложено в 1985 году лауреатом Нобелевской премии Луисом Альваресом (премия 1968 г.). Сотрудники ФИАН, кандидаты физ.-мат.наук Александр Карев и Валерий Раевский, заинтересовавшись им, "заразили" этим интересом и своих коллег из других институтов (ИЯИ РАН, НИИ ЯФ МГУ и ИФВЭ). Так началось воплощение в жизнь актуальной в наши дни разработки - детектора взрывчатых веществ. Финансирование работа получила после известного всем террористического акта 11 сентября 2001 года, тогда интерес к российской разработке выказала Национальная лаборатория им. Лоуренса в Ливерморе (США). В итоге работа российских ученых была включена в план финансирования в рамках правительственной программы США "Инициатива в области нераспространения оружия массового поражения" и получила грант от Американского фонда гражданских исследований и разработок.

"В настоящее время изготовлен первый прототип прибора. Все его части, а это компактный ускоритель электронов (разрезной микротрон), детектор вторичного излучения и блок обработки сигналов, работают в штатном режиме. По расчетам наших американских коллег всего одна такая детектирующая установка сможет обеспечить работу самого большого Нью-Йоркского международного аэропорта им. Джона Кеннеди", - рассказывает руководитель проекта.

Время досмотра одной единицы багажа с помощью разработанной установки составит всего 2 секунды. Это делает такой детектор идеальным средством обеспечения безопасности аэропортов и вокзалов. Основным партнером по разработке является США. Для того чтобы обеспечить установками все 2030 аэропортов страны, нужно будет выпускать около 200 установок в год. Однако есть заказы и от других государств, в частности, от Саудовской Аравии, Малайзии и Турции. Самой же важной задачей ближайшего времени является сооружение первой рабочей установки. Это планируется сделать в США в течение года.
Фотоядерная методика поиска скрытых взрывчатых веществ может быть использована и для создания роботизированного мобильного комплекса для гуманитарного разминирования - серьезной проблемы более чем для 60 стран. Проведенное в ФИАНе компьютерное моделирование показало, что чувствительность и надежность такой системы полностью удовлетворяет стандартам ООН к качеству очистки территории от взрывоопасных предметов. По сравнению с повсеместно используемым ручным методом поиска мин применение автоматизированного детектора резко уменьшит риск проведения работ и во много раз увеличит их скорость.

По материалам АНИ " ФИАН-информ "


Источник: ФИАН-Информ



Комментарии
Gromolyot, 05 июня 2010 00:06 
Вероятны трудности с защитой от побочных излучений. Невозможно выявлять взрывчатку, проносимую на теле.
Да ладно, потенциальный террорист перед ужасом облучения сам отдаст взрывчатку! И засвеченную шпионскую видеопленку тоже, и сожженную CCD матрицу фотоаппарата...
Про мобильную установку разминирования на гусеничной платформе, работающую на этом принципе читал где-то в 2004 - 2005.

Кстати, безазотные ВВ он не поймет. Зато попутно проведёт стерилизацию любой заразы
В 7-и минутном ролике LLNL: Science in the National Interest Национальной лаборатории им. Лоуренса в Ливерморе (США), выложенном на youtubе, www.youtube.com/user/LivermoreLab , начиная с 4-ой минуты, рассказывается о различных детекторах, разработанных лабораторией
Излучение может негативно повлиять на сотрудника, осуществляющего проверку. Думаю, что не будет лишним разработать защиту от негативного излучения. А девайс заслуживает похвалы. Такой прибор в списке рычагов борьбы с терроризмом- это весомый шаг в развитии безопасности общества.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Изображения металлического фотонного кристалла
Изображения металлического фотонного кристалла

Периодическую таблицу Менделеева опять улучшили: наночастицы пятивалентного плутония
Соединения шестивалентного плутония в щелочной среде могут привести к кристаллизации фазы (NH4)PuO2CO3, которая стабильна в течение нескольких месяцев и содержит пятивалентный плутоний. Получение новой фазы пятивалентного плутония фундаментально интересно и открывает новые возможности в разработке более эффективных технологий переработки радиоактивных отходов.

MAPPIC 2019. Второй день
15 октября 2019 года прошел второй день I Московской осенней международной конференции по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

MAPPIC 2019. Первый день
14 октября 2019 года успешно открылась I Московская осенняя международная конференция по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2019). В сообщении приведены темы докладов и небольшой фоторепортаж.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Как правильно заряжать аккумулятор?
Д. М. Иткис
Химик Даниил Иткис о том, как правильно заряжать аккумуляторы гаджетов и почему телефон выключается на холоде

Постлитийионные аккумуляторы
В. А. Кривченко
Физик Виктор Кривченко о перспективных видах аккумуляторов, фундаментальных проблемах в производстве литий-серных источников тока и преимуществах постлитийионных аккумуляторов

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.