Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рисунок 1. (A) Схема установки для SPEL. (B) 3D моделирование поведения электронов с помощью метода Монте-Карло. (С) Зависимость получаемого разрешения от Z (см. Рисунок 1a).
Рисунок 2. Наноструктуры, полученные метом SPEL.
Рисунок 3. (A) Зависимость потока электронов от толщины используемой плёнки источника. (B) Сравнительная характеристика время облучения – облачаемая площадь для SPEL метода с использованием 63Ni и Be3H2 и электронной литографии.
Рисунок 4. (A-B) Сантиметровых размеров массив наностержней, полученный по технологии SPEL. (C) Результаты измерения отражающей способности данного массива.

Новая электронная литография

Ключевые слова:  SPEL, нанолитография, наностержни, нанотехнологии, электронная литография

Опубликовал(а):  Смирнов Евгений Алексеевич

30 мая 2010

Электронная литография – один из перспективных, но пока ещё достаточно сложный и дорогостоящий для коммерческого применения метод создания и промышленного производства самых различных устройств и компонентов устройств, позволяющий достигнуть разрешения в 1 нм. Из-за этих особенностей электронной литографии, многие группы учёных по всему миру разрабатывают аналоги данного метода.

Так американские учёные в недавно опубликованной работе в журнале NanoLetters предложили использовать в качестве источника электронов тонкие плёнки излучателей β-электронов, как, например, 63Ni и Be32, придумав методу яркое название SPEL (self-powered electron lithography). Оказалось, что в этом случае можно обеспечить разрешение вплоть до 35 нм, что сравнимо с теми техпроцессами, которые разрабатываются и используются на практике ведущими компаниями (Intel, AMD, IBM и т.д.) для производства новых поколений процессоров и других полупроводниковых устройств. Схема установки, приведённая на рисунке 1, чрезвычайно проста, легко масштабируема и не требует дополнительных модулей (вакуумной системы, высоковольтного источника питания и т.п.). Тонкая плёнка нитрида кремния позволяет ослабить до приемлемых значений энергии поток β-электронов, а вольфрамовая маска эффективно поглощает электроны в тех местах, где это требуется. Полученные результаты говорят сами за себя (Рисунок 2), разрешение в 35 нм не такая уж и большая проблема. Стоит отметить также, что данная система позволяет сразу засвечивать большие площади подложек с фоторезистом, значительно ускоряя данную процедуру (Рисунок 3). Так как это не первая публикация данной научной группы по методу SPEL, то они решили продемонстрировать всю мощь разработки и создали массив сантиметровых размеров кремниевых наностержней (диаметр 50 нм и радиус кривизны вершины 5 нм), который отражает менее 1% падающего на него излучения (Рисунок 4).

Безусловно данная разработка найдёт своё достойное применение в различных областях нанотехнологий, ведь с такими впечатляющими характеристиками её можно использовать при создании наноустройств для компьютерной техники, в производстве высокоэффективных солнечных батарей, и даже при создании кантилеверов для атомно-силовой микроскопии.




Комментарии
Немного смущает то, что эксперимент проводится на воздухе (т.е. в неконтролируемой атмосфере) - как это скажется на воспроизводимости результатов (?).
Хоть они и пишут, что без вакуумная система и вообще на открытом воздухе можно работать, однако я считаю, что воздух всё-таки очищается некоторым образом или используется инертная атмосфера (азот, например)...Но всё-таки это лучше чем установки для глубокого вакуума
Э...
Не уверен.

Какая же там должна быть мощность излучения для обеспечения скорости и равномерности процесса?

И как бороться со вторичным излучением?

Нашёл
По рисунку ток 0,1 - 1 нА/см2.
Что эквивалентно примерно 6,02*1013 - 14 Бк.
Что примерно в 1011-12 раз выше фона.
Ио-хо-хо!
Александр, однако не будем забывать, что от
бетта излучения защищает даже не очень
макрослой вольфрама (который в статье
использовался как поглотитель этих
электронов)...
Neugierige, 31 мая 2010 19:17 
Тонкая плёнка нитрида кремния позволяет ослабить до приемлемых значений энергии поток β-электронов, а вольфрамовая маска эффективно поглощает электроны в тех местах, где это требуется.-
и всё становиться на свои места.
А для каких солнечных батарей можно использовать?
Обсчитался.
Превышение фона в 106-7 раз. Но в общем это уже не принципиально.

С бета излучением не всё так просто. От пучка электронов вольфрам защитит, а вот от вторичного рентгеновского излучения, которое этот пучок вызовет...

Кроме того, чистых бета-излучателей не бывает (ну, или это большая редкость). Обычно вместе с бета-излучением летит ещё гамма-квант.
Gromolyot, 08 июня 2010 01:02 
63Ni , похоже, та большая редкость, он ещё в детекторах хроматографов используется. Насчёт плёнки нитрида кремния и её роли , вероятно, есть ньюанс перевода, на картинке её нет.
Проблемой может оказаться микро и не только загрязнение атомами излучателя, особенно трития.
Как нет, а слово Nitride ни о чём не говорит?

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Призмы
Призмы

Научно-популярный лекторий РНФ на Международном молодежном научном форуме «Ломоносов-2019»
С 9 по 11 апреля российские ученые рассказывают о своих научных исследованиях, которые выполняются по грантам Российского научного фонда. Лекции проходят в рамках Лектория РНФ во время проведения Международного молодежного научного форума «Ломоносов-2019».

Фестивали «От Винта!» и NAUKA 0+ представили инновационные проекты на выставке Hannover Messe 2019
Ганновер (Германия) 5 апреля 2019 года. – Объединённая экспозиция Фестиваля детского и молодежного научно-технического творчества “От Винта!” и Всероссийского фестиваля NAUKA 0+ была представлена на крупнейшей выставке промышленных технологий Hannover Messe 2019 в Германии в составе стенда Российской Федерации, организованного Российским экспортным центром при поддержке Министерства промышленности и торговли РФ.

Стань магистрантом в области светодиодных технологий без экзаменов
От бакалавриата к магистратуре без вступительных экзаменов уже сейчас? С портфолио возможно все! Участвуйте в конкурсе «Науке нужен ты!» и получайте бюджетный билет в первую в России магистерскую программу в области светодиодных технологий и оптоэлектроники Университета ИТМО!

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
А.А.Семенова
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.