Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Пицен, который исследовали ученые.
Кривые сверхпроводящего перехода.

Органические сверхпроводники

Ключевые слова:  PAH, ароматические углеводороды, сверхпроводимость

Опубликовал(а):  Уточникова Валентина Владимировна

28 марта 2010

Сверхпроводимость органических материалов встречается крайне редко {Если, конечно, не принимать в расчет известный класс органических сверхпроводников, коих не так уж и мало - Прим. ред.}. Среди заметных примеров разве что допированные металлами углеродные материалы, такие как графит и фуллерен {фуллериды, СВГ - Прим. ред.}. Относительно высокие температуры перехода в сверхпроводящее состояние (Tc) были опубликованы для интеркалированного кальцием и рубидием графита (CaC6; Tc = 11.5 K) и RbCs2C60 (Tc = 33 K).

Йоширо Кубозоно с коллегами из различных институтов Японии обнаружили сверхпроводимость простого углеводорода, допированного щелочными металлами. Этим углеводородом является пицен, плоская молекула, представляющая собой пять зигзагообразно сшитых между собой бензольных колец. При нагревании кристаллов пицена до 440 К с металлическим калием в вакуумированной стеклянной трубке они окрашиваются из белого в черный цвет и демонстрируют металлические свойства. Исследователи получили широкий ряд таких соединений от одного атома металла на одну молекулу пицена до более, чем пяти атомов. При охлаждении такие соединения демонстрировали сверхпроводящее поведение с температурой перехода Tc от 6.5 до 18 K. Несмотря на то, что эти температуры достижимы с использованием жидкого гелия, для органических сверхпроводников это все равно очень высоко.

Резкость перехода - разница между температурой начала и конца перехода - для пиценов составляет 0.5К, что примерно соответствует этому параметру для CaC6, но гораздо быстрее, чем для K3C60 (более 10 K) и для недавно открытых пниктидных сверхпроводников. Кубонозо с коллегами также исследовал интеркаляцию пицена другими щелочными металлами, и оказалось, что натриевые и рубидиевые аналоги сверхпроводимость не демонстрировали сверхпроводимости, а рубидиевый демонстрировал температуру перехода 6.9 K.


Источник: Nature



Комментарии
Интересно, что можно создать какие угодно сверхпроводники? И их уже испоьзуют на практике? А где? И...посмотреть как это возможно.
Акбашев Андрей Рамирович, 02 апреля 2010 03:04 
Нет конечно, однако понимание сверхпроводимости за последнее несколько лет повысилось значительно. Научились, например, вызывать сверхпроводимость не химически (допирование, интеркалирование), а искусственно вводя электроны или дырки в изоляторы и металлы, доводя концентрацию носителей заряда на уровне Ферми (который также изменяет свое положение) до требуемого значения - в некоторых случаях это приводило к возникновению сверхпроводимости.
Очень любопытно.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Графен отдыхает. Максен (MXene) пришел на замену
Графен отдыхает. Максен (MXene) пришел на замену

Крабовый панцирь побеждает грязную нефть
Химики МГУ разработали уникальную люминесцентную методику определения маркеров «грязной нефти» (дибензотиофенов) с использованием селективной сорбции в оптически прозрачных материалах на основе сшитых гелей хитозана.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Броуновское движение скирмионов.Растягиваем графен правильно. Красное вино, кофе и чай помогают создавать материалы для гибкой носимой электроники. Металлическая природа кремния и углерода.

К 2023 году российские химики могут занять 4-е место в мире
Эксперты отметили рост числа научных публикаций отечественных ученых и сообщили, что к 2023 году российские химики могут занять 4-е место в мире по публикационной активности.
27 – 29 ноября в рамках юбилейных мероприятий Химического факультета МГУ и торжественной церемонии закрытия Международного года Периодической таблицы химических элементов эксперты подвели итоги 2019 г.

Константин Жижин, член-корреспондент РАН: «Бор безграничен»
Наталия Лескова
Беседа с К.Ю. Жижиным, заместителем директора Института общей и неорганической химии им. Н.С. Курнакова по научной работе, главным научным сотрудником лаборатории химии легких элементов и кластеров.

Мембраны правят миром
Коллектив авторов, Гудилин Е.А.
Ученые МГУ за счет детального изучения структурных и морфологических характеристик материалов на основе оксида графена и 2D-карбидов титана, а также моделирования их свойств, улучшили методы создания мембран для широкого круга практических применений.

Лекция про Дмитрия Ивановича и Наномир на Фестивале науки
Е.А.Гудилин и др., Фестиваль науки
В дни Фестиваля науки «NAUKA 0+» на Химическом факультете МГУ ведущие ученые познакомили слушателей с самыми современными достижениями химии. Ниже приводится небольшой фоторепортаж 1 дня и расписание лекций.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.