Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Энергетический спектр электрона в УНТ, облучаемой фемтосекундными лазерными импульсами с разными временами задержки.
Исследование отдельной нанотрубки.
Временной отклик и зависимость от поляризации визуализируемых граничных полей.
а) t<0: фотонный импульс и электронный пучок еще в пути
b) t=0: тот самый момент, когда фотонный импульс и электронный пучок достигли нанотрубки
c) t>0:процессы, происходящие сразу за этим, в частности, приобретение/потеря энергии электроном.

Электронная микроскопия видит поля

Ключевые слова:  PINEM, визуализация, электронная микроскопия

Опубликовал(а):  Уточникова Валентина Владимировна

23 декабря 2009

Обычные электронные микроскопы предоставляют информацию о структуре и связях в материале с атомным разрешением, но умалчивают об электромагнитных полях. Но теперь внутри и рядом с наноструктурой можно рассмотреть и структуру поля, для чего предлагается метод фотонной электронной микроскопии ближнего поля (photon-induced near-field electron microscopy PINEM), разработанный Ахмедом Зевайлем с сотрудниками в Калифорнийском технологическом институте.

PINEM основан на возбуждении наноструктуры высокоинтенсивными пульсами лазерного излучения с одновременной бомбардировкой наноструктуры электронными пучками. Если пучок электронов "прилетает" точно в тот же момент, что и фотонный импульс, электрон приобретает или теряет дискретное количество энергии... На это взаимодействие сильно влияет ничтожно малое затухающее электрическое поле, создаваемое при возбуждении наноструктуры.

Выбирая только те электроны, которые получают от фотонов энергию, исследователи получили изображения этого ничтожно малого поля, изменяющегося с течением времени, для углеродных нанотрубок и нанонитей серебра. Они обнаружили, что поле может распространяться вплоть до 50 нм в каждую сторону от наноструктуры. Этот потрясающий новый метод использует принципы оптической ближнепольной визуализации и позволит исследовать граничные поля с "атомным разрешением".


Источник: Nature



Комментарии
Коваленко Артём, 23 декабря 2009 11:32 
Как можно "визуализировать электромагнитные поля"? Не понимаю. Это же свет, его нужно просто увидеть. Приставки для детектирования, например, катодолюминесценции в эл. микоскопах существуют давно.
В Натуре исследователи показали, как можно увеличить разрешающую способность метода, используя предложенный аглоритм обработки данных, полученных при различном импульсном возбуждении.
Я правильно понял?
Зевайль с коллегами обнаружил, что электрон может поглотить более восьми электронов

правда?
Коваленко Артём, 24 декабря 2009 10:48 
Электроноед или даже электронибал
yura_l, 24 декабря 2009 20:20 
Что касается поглощение 8 электронов - это неточности перевода. Скорее всего речь идет об поглощение электронами до 8 фотонов. Подробнее об этой теме можно прочитать
здесь
Спасибо.
Еще подробнее можно прочитать в статье
А про неточность перевода - это вы верно заметили. Валентина Владимировна - большой специалист по искажению смысла и сути.
Neugierige, 24 декабря 2009 23:49 
Валентина Владимировна, очень любопытно.
Интересно, есть ли какая- либо взаимосвязь с Terahertz generation from graphite?

Вполне возможно ссылка приведет куда- нибудь в другое место, почему- то стало случаться. Если понадобиться, могу выслать.

P.S. Наилучшие пожелания А.С.
Я прочитал этот отрывок из него совершенно не ясно что и почему происходит. Ближнее поле это насколько мне известно, поле электромагитного излучения сразу в расстоянии одной двух длин волн за очень маленьким дифракционным отверстием (по Френнелю). Электрон проходя через вещество всегда теряет или получает дискретные, именно дискретные количества энергии. Не понимаю зачем понадобился свет?
Ближнее поле это насколько мне известно, поле электромагитного излучения сразу в расстоянии одной двух длин волн за очень маленьким дифракционным отверстием (по Френнелю)

photon-induced near-field electron microscopy PINEM

Год назад мы обсуждали постановку этой задачу для рентгеновской микроскопии
X-rays
Белик Людмила Ивановна, 06 января 2010 19:17 
Увидеть поле - эка невидаль ! Его прекрасно видит взор ясно видящего (открыто неземное зрение для дали в космосе) . Но микроском увидел не поле , а след его - штришочки . Под микроскопом не увидеть поле-движение .
Обычные электронные микроскопы предоставляют информацию о структуре и связях в материале с атомным разрешением, но умалчивают об электромагнитных полях?Так в электроном микроскопе именно электромагнитные поля и видны, а по ним уже судим о структуре и связях.Другое дело увидеть динамику электромагнитного поля связей, но это даже для макрообъектов не сделано.
Скорее всего метод применим для исследования отдельных нанообъектов. Иначе лазерный луч и создаваемое им поле будет возбуждать несколько структур, и тогда информация от взаимодействия с электронным пучком будет малопригодна

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Сателлит
Сателлит

Интервью с участниками, авторами задач и организаторами XIII Олимпиады
Предлагаем ознакомиться с подборкой видеороликов - миниинтервью, взятых в течение очного тура XIII Всероссийской Интернет-олимпиады по нанотехнологиям "Нанотехнологии - прорыв в будущее!" (25 - 30 марта 2019 года).

Неделя Олега Лосева
Портал RSCI.RU и инициаторы проведения "Недель Олега Лосева" приглашают все вузы и факультеты физико-технологического и радиоэлектронного профиля к участию в первой Неделе Олега Лосева в Рунете, посвященной Олегу Владимировичу Лосеву - признанному пионеру полупроводниковой электроники и оптоэлектроники.

Магистратура Московского университета по химической технологии
Химический факультет МГУ имени М.В.Ломоносова объявляет о приеме в магистратуру "Химическая технология" для подготовки специалистов в области полимерных композиционных материалов, углеродных материалов, защитных покрытий.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Микроэлементарно, Ватсон: как микроэлементы действуют на организм
Алексей Тиньков
Как на нас воздействуют кадмий, ртуть, цинк, медь и другие элементы таблицы Менделеева рассказал сотрудник кафедры медицинской элементологии РУДН Алексей Тиньков в интервью Indicator.Ru

Зимняя научная конференция студентов 4 курса ФНМ МГУ 22-23 января 2019 г.
Сафронова Т.В.
Настоящий сборник содержит тезисы докладов зимней научной студенческой конференции студентов 4-го курса ФНМ

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.