Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 

Infox: Наносилы рвут песок на капли

Ключевые слова:  наномеханика, периодика

Автор(ы): Павел Котляр

Опубликовал(а):  Гудилин Евгений Алексеевич

21 сентября 2009

Американские ученые обнаружили удивительное сходство физических свойств сыпучих веществ с жидкостями. Помимо неустойчивости и стремления больших объемов сыпучих веществ образовывать более или менее ровную поверхность, струи песка, состоящего из маленьких гранул, могут, как и вода, образовывать макроскопические образования – «капли». Известно, что неустойчивость течения струи жидкости, ведущая к фрагментации потока на отдельные капли, возникает из-за сил поверхностного натяжения, которые не могут возникнуть в сыпучих веществах.

Процесс образования песочной «капели» пронаблюдали ученые Чикагского университета при помощи высокоскоростной камеры. Чтобы исследовать процессы эволюции струи песка, состоящего из стеклянных гранул диаметром порядка 100 микрометров, исследователи под руководством аспиранта Джона Ройера заставили камеру скользить вдоль струи песка с ускорением свободного падения внутри трубы, внутри которой было низкое давление воздуха. Опыт показал, что по мере течения струи ее диаметр уменьшается, а начальные неоднородности начинают расти. Затем струя делится на кластеры, между которыми остаются тонкие перегородки толщиной в несколько гранул. После разрываются и эти «мостки», и струя превращается в поток отдельных кластеров.

Причинами, которые могли заставлять гранулы объединяться в кластеры, ученые называли гидродинамическое взаимодействие песчинок с обтекающим их воздухом, неупругие столкновения и силы трения. Влияние газа ученые исключили, проведя аналогичные опыты в трубе с воздухом, картина изменения струи не менялась. Чтобы проверить влияние упругости соударения гранул на процесс образования кластеров, ученые заменили стеклянные сферические гранулы на медные такого же размера. В отличие от стеклянных шариков, сталкивающихся почти абсолютно упруго, медные при столкновении теряют порядка 10% своей кинетической энергии. Как считали ученые, неупругость столкновений должна помогать образованию кластеров, однако оказалось, что медные гранулы быстро рассеивались и вообще не сливались в «капли».

Наносилы

Из причин, удерживающих гранулы друг с другом, остались слабые силы межмолекулярного взаимодействия (Ван-дер-Ваальса). Чтобы оценить их величину, ученые следили за кластерами до тех пор, пока набегающий поток воздуха не начинал отрывать от кластеров отдельные гранулы. Оказалось, что отдельные гранулы притягиваются к остальным с силами порядка наноНьютонов.

Атомно-силовой микроскоп

Справка
сканирующий зондовый микроскоп высокого разрешения,

Для оценки сил, удерживающих гранулы друг с другом, ученые использовали атомно-силовой микроскоп. Оказалось, что возникающие между гранулами силы тем больше, чем более гладкими поверхностями они соприкасаются.

«Данные с микроскопа удивили нас, продемонстрировав, что небольшие изменения в этих взаимодействиях могут повлиять на разрушение всей струи и отвечать за образование капель», — пояснил Джон Ройер.

Ученые считают, что полученные сведения о характере течения гранулированных веществ можно использовать в фармакологии при изготовлении, например, таблеток. «Расчеты показывают, что до 60% мощности многих подобных заводов расходуется на организацию транспорта веществ», — добавил он.

Работа чикагских ученых опубликована в журнале Nature.


В статье использованы материалы: Infox


Средний балл: 10.0 (голосов 1)

 


Комментарии
100 мкм - это примерно 0,1 мм. Для формования таблеток это слишком мелкий порошок. Используемые в промышленной фармакологии материалы более крупнозернистые.
Ван-дер-Ваальс короткодействующий. А тут - электростатика.
Интересно, почему же медь не слипается, у металла ведь дисперсионная компонента больше, чем у кварца? Да потому что металлические частицы (из-за проводимости) быстрее теряют заряд (например, трибоэлектрический, полученный при пересыпании) и электростатика не работает. Чтобы в этом убедиться, достаточно покрыть стеклянные частицы монослоем антистатика (ПАВ, металлизировать) - или ионизировать газ.

PS Насчёт движущегося песка: при интенсивном трении может электризоваться до свечения (например, красивый эффект Коппа-Этчеллса)
Пастух Евграфович, 23 сентября 2009 10:02 
На кончиках всех лопастей лампочки есть - их тоже включают.

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Золотая ветвь
Золотая ветвь

Наносистемы: физика, химия, математика (2024, Т. 15, № 1)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume15/15-1
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 5)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-5
Там же можно скачать номер журнала целиком.

Наносистемы: физика, химия, математика (2023, Т. 14, № 4)
Опубликован новый номер журнала "Наносистемы: физика, химия, математика". Ознакомиться с его содержанием, а также скачать необходимые Вам статьи можно по адресу: http://nanojournal.ifmo.ru/articles/volume14/14-4
Там же можно скачать номер журнала целиком.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2023 году
коллектив авторов
30 мая - 01 июня пройдут защиты магистерских квалификационных работ выпускниками Факультета наук о материалах МГУ имени М.В.Ломоносова.

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022
Коллектив авторов
Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2022 содержат следующую информацию:
• Подготовка бакалавров на факультете наук о материалах МГУ
• Состав Государственной Экзаменационной Комиссии
• Расписание защит выпускных квалификационных работ бакалавров
• Аннотации квалификационных работ бакалавров

Эра технопредпринимательства

В эпоху коронавируса и борьбы с ним в существенной степени меняется парадигма выполнения творческих работ и ведения бизнеса, в той или иной мере касаясь привлечения новых типов дистанционного взаимодействия, использования виртуальной реальности и элементов искусственного интеллекта, продвинутого сетевого маркетинга, использования современных информационных технологий и инновационных подходов. В этих условиях важным является, насколько само общество готово к использованию этих новых технологий и как оно их воспринимает. Данной проблеме и посвящен этот небольшой опрос, мы будет рады, если Вы уделите ему пару минут и ответите на наши вопросы.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.