Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Квантовые компьютеры обычно манипулируют частицами при помощи света и магнитных полей. И хотя одна ячейка информации в таком аппарате может быть материализована в виде небольшой группы атомов или вовсе – в виде единичных частиц, даже отдельных фотонов, управление этой информацией требует построения виртуозной аппаратуры (иллюстрация Digital World Tokyo).
Каждый кубит может находиться в суперпозиции "классически" разрешённых состояний (слева), потому пространство состояний регистра, состоящего всего из трёх кубитов (правая картинка), радикально "больше" единственно возможного (на каждый момент времени) состояния регистра, построенного из трёх битов классических (иллюстрации Wikimedia Commons, quantiki.org).
Rainier – опытный прототип 128-кубитного чипа от D-Wave Systems. Опуская детали, каждый кубит тут представляет собой крошечную петлю из ниобия, находящегося в сверхпроводящем состоянии, по которой может курсировать ток по часовой или против часовой стрелки (это базовые состояния 0 и 1) (фото D-Wave Systems).
Схема предлагаемого устройства. В его основе – дорожки, создающие микроволновый резонатор, внешние поля и армия частиц, несущих "согласованные" спины электронов (иллюстрация J.H. Wesenberg et al.).
Создатели фотонного квантового чипа подчёркивают принципиальную масштабируемость его архитектуры. Потому, мол, он открывает дорогу к построению более крупных, полностью оптических квантовых компьютеров. Подробности – в статье в Science и пресс-релизе университета (фото Carmel King).
Оптический квантовый чип из Бристоля насчитывает в длину всего 26 миллиметров. (Что важно для будущего – при его изготовлении применялась традиционная технология производства микросхем.) Но вот сопутствующее оборудование, позволившее превратить этот оптический чип собственно в квантовый компьютер, – занимает куда больше места (фото Science, Jonathan Matthews/University of Bristol).
Слева: специальная аппаратура могла генерировать и детектировать фотоны по одному. Справа: ещё двое участников работы – Джереми О`Брайен (Jeremy O`Brien), директор Центра квантовой фотоники (Centre for Quantum Photonic), ведущий автор эксперимента и Джонатан Мэттьюс (фото Jonathan Matthews, University of Bristol).

MEMBRANA: Разработан квантовый чип на сто миллиардов спинов

Ключевые слова:  квантовый компьютер, квантовый чип, кубит

Опубликовал(а):  Никитина Елизавета Александровна

21 сентября 2009

"Они быстро решают задачки, над которыми обычные машины думают миллиард лет". "С их помощью злоумышленники могут взломать любые военные шифры". Таков диапазон – от дифирамбов до страшилок – обывательских представлений о квантовых компьютерах. И хотя прикладных таких машин, считай, что и нет, эксперименты и исследования в этой области становятся всё интереснее и интереснее.

Квантовый компьютер не первый год манит исследователей своим колоссальным потенциалом. Принцип квантового параллелизма позволяет X квантовым битам находиться сразу в 2X состояний, а выполнение логических операций над целой группой таких кубитов (квантовым регистром) — аналогичным образом ускорить вычисления, против классической машины. Но теория — теорией, а вот построение квантовых компьютеров в металле — задачка не из лёгких. Казалось бы, физически кубиты можно реализовать просто массой способов, выбирай любой.

Подойдут всякого рода ловушки (оптические в частности) для квантовомеханических объектов (например ионов), которые могут не только удерживать частицы, но и заданным образом менять их квантовые параметры и выполнять измерение (считывание информации). В ряде опытов показано, что для построения квантовых регистров можно воспользоваться трансмонными кубитами, нейтральными атомами или фотонами.

Увы, "громоздкость", а также требовательность к условиям среды, оборудования, способного реализовать всего один кубит, не идёт ни в какое сравнение с классическими микросхемами с их миллионами транзисторов на считанных сантиметрах площади. И хотя с ростом числа кубитов в регистре производительность квантовой машины растёт очень быстро, пока даже близко квантовые процессоры не могут подобраться по скорости к суперкомпьютерам, щёлкающим очень ёмкие задачи. Есть ли тут пути для прогресса?

Как известно, можно охладить проводники в схеме до сверхпроводящего состояния и запустить в них электроны (вернее, куперовские пары), придавая им при помощи магнитных полей определённые состояния. Тем самым создаются кубиты, а также выполняются квантовые операции над ними. По такому принципу (если упрощать) работают экспериментальные квантовые процессоры канадской компании D-Wave Systems. О ней и о её разработке (16-кубитном чипе) мы рассказывали в начале 2007 года. Вообще же за несколько лет существования компания прошла путь от прототипов, содержащих 7 кубитов, до чипов с 48 кубитами, повествует BCBusiness. А сейчас в отработке и на самых первых тестах числится 128-кубитный чип с кодовым названием Rainier. 1024-кубитный же процессор, обещанный к концу 2008-го, — так и не создан. Но теперь канадцы заверяют, что покажут его к концу года нынешнего.

У многих экспертов работы и успехи D-Wave вызывают некоторый скепсис, во многом благодаря тому, что компания не спешит раскрывать в рецензируемых материалах все тонкости своих новинок. Тем не менее D-Wave оптимистична в отношении развития этой линии квантовых компьютеров. При решении определённого класса проблем, уверяют канадцы, Rainier будет в 100 раз быстрее, чем классический компьютер класса "за тысяч". А ещё компания запустила проект по распределённым вычислениям AQUA@home (Adiabatic QUantum Algorithms), в рамках которого разрабатываются и изучаются новые алгоритмы для квантовых вычислений на адиабатических системах (Adiabatic quantum computation). Как видим, за два года работ D-Wave сумела шагнуть от схемы с 16 кубитами к 128-кубитному варианту. Не столь уж большой темп. И ведь по мере усложнения квантового чипа трудности будут накапливаться как снежный ком. Потому любые свежие идеи в этой сфере воспринимаются в мире с большим интересом.

Ныне революцию вместо эволюции предлагает совершить группа учёных из Оксфорда (University of Oxford), Йеля (Yale University) и Орхуса (Aarhus Universitet). Они предлагают создать квантовый чип, основанный на миллиардах спинов, из которых можно организовать сразу сотни кубитов. Незачем упаковывать частицы в индивидуальные ловушки с отдельным управлением, рассудили авторы этой работы, давайте создадим один единственный резонатор на чипе, в котором будет "находиться" 100 миллиардов электронных спинов. Судя по рисунку (его мы приводим ниже), физически они будут "упакованы" в молекулы-фуллерены, но исследователи говорят, что материал можно варьировать. Чип будет охлаждён до криогенных температур, так что электроны в нём образуют куперовские пары. А соединённое с резонатором трансмонное окно (туннельный переход между сверхпроводниками) должно использоваться для выполнения операций.

Но как всё же привести столь крупный ансамбль электронов в атомах в нужное состояние и как ими управлять? Тут есть сразу несколько аспектов. "Единственный электрон (точнее, спин) слабо взаимодействует с внешней средой, — рассказывает один из авторов работы Янус Визенберг (Janus Wesenberg) из Оксфорда, — это делает его хорошей ячейкой квантовой памяти, но затрудняет перевод в возбуждённое состояние (запись) или считывание. В новом регистре мы используем тот факт, что коллективное взаимодействие ансамбля миллиардов спинов и микроволнового резонатора в значительной степени зависит от так называемого эффекта сверхизлучения (излучение синхронного коллектива атомов, рассматриваемых как единая квантовомеханическая система, – прим. ред.). Это делает возможным передачу микроволнового фотона (представляющего какой-нибудь записываемый кубит) из резонатора в ансамбль спинов за несколько десятков наносекунд, в сравнении с долей секунды для одного спина. Когда фотон поглощён ансамблем, он живёт там как делокализованное возбуждение".

Хорошо, но ведь нам нужно добиться ситуации, в которой разные кубиты содержат электроны с разными волновыми функциями (то есть с разными суперпозициями нулей и единичек)? Тут вступает в действие ещё один фактор. Направление спина частицы можно задать сильным внешним магнитным полем, объясняют учёные. А набор возбуждений в столь сложной системе может быть описан как спиновые волны внутри чипа, — говорит Янус. Чтобы их изменить, нужно приложить к системе градиент магнитного поля. А чтобы одновременно в системе существовало много отличных мод таких спиновых волн, надо при записи кубитов использовать принцип, схожий с голографией — добавляют физики.

Совмещение этих приёмов, рассчитали авторы исследования, позволит не только внутри сверхпроводникового резонатора создать сразу сотни кубитов, но и проводить над ними "оптом" однобитные и двухбитные квантовые логические операции. (Детали этого проекта изложены в статье в Physical Review Letters.) А главным преимуществом системы авторы считают тот факт, что в ней можно управлять сразу чудовищным числом спинов, без необходимости "возни" с каждым спином по отдельности. При этом время когерентности спинов (сохранения сцепленного состояния частиц) может достигать десятков миллисекунд. Это довольно много по нынешним представлениям.

Сейчас учёные в Йеле и Оксфорде ведут дело к тому, чтобы показать работоспособность новой системы не на бумаге, а на практике. И если когда-нибудь чип на сотни кубитов заработает, его вполне можно будет считать аналогом суперкомпьютеров в мире квантовых вычислений. А пока "монстр из миллиардов спинов" не построен, стоит посмотреть на другую интересную работу. На этот раз — практическую. Специалисты из Центра нанонауки и квантовой теории информации университета Бристоля (Centre for Nanoscience and Quantum Information) впервые в мире провели вычисления на оптическом квантовом компьютере. И не важно, что сам этот компьютер был относительно примитивным, а задачка — проста.

В качестве входных сигналов в чипе использовались четыре отдельных фотона. Они представляли четыре кубита. А сама схема квантового компьютера заключалась в системе микроскопических кварцевых волноводов, размещённых на кремниевом чипе. Сам рисунок пересечений этих волноводов кодировал нужную учёным последовательность квантовых операций. И каков же был результат? Оптический квантовый компьютер "попросили" найти простые множители числа 15, ответ был — 3 и 5. При этом использовался квантовый алгоритм Шора (Shor's algorithm). "Эту задачку намного быстрее мог бы решить любой школьник, — заявил один из авторов опыта Альберт Полити (Alberto Politi), — Но это было действительно важно для подтверждения принципа". Поиск простых сомножителей лежит в основе современных схем шифрования, в том числе — в системах связи через Интернет. Так что в перспективе квантовый компьютер тут может сослужить большую службу. Ведь это только для простого примера применять квантовый алгоритм — странно. Если массив чисел, требующих обработки, окажется очень велик, преимущество квантовых чипов в скорости проявит себя.

В последние годы учёные не раз совершали небольшие шаги, приближающие эру практически пригодных квантовых компьютеров. Новые идеи и технологии созревают в разных институтах и университетах, но когда-нибудь всё это "выстрелит". Например, уже известен способ, как организовать в квантовом компьютере проверку данных, придумано устройство, которое по требованию выдаёт строго один электрон, на кончике пера предсказана возможность создания атомов без температуры, также учёные провели квантовую телепортацию атома на один метр, научились хранить числа в атомарном паре и построили усилитель света на микрочипе. Никто вроде бы не думает всерьёз, будто квантовые компьютеры возьмут да и заменят все обычные процессоры в некоем светлом будущем. Но квантовые системы вполне могут отвоевать крупную нишу в научных исследованиях в области физики, биологии и химии и фармацевтики, а ещё — криптографии и ряде других областей. Тогда, наверное, удивить или напугать обывателя "непонятной диковинкой" уже не получится. К квантовым причудам, поставленным на службу человеку, попросту привыкнут.


Источник: MEMBRANA, Phys. Rev. Lett.



Комментарии
Спасибо, хорошо и от души посмеялся
Гудилин Евгений Алексеевич, 22 сентября 2009 08:39 
Вот так всегда. Юмор и только он.
Самсонов Алексей Михайлович, 22 сентября 2009 10:15 
Действительно-ли это все так? Уж очень оптимистично
Гудилин Евгений Алексеевич, 22 сентября 2009 10:37 
Слишком оптимистично.
Федосеев Андрей Николаевич, 25 сентября 2009 11:17 

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Удивительный диоксид олова
Удивительный диоксид олова

Конкурс логотипа ФНМ МГУ
Факультет наук о материалах МГУ имени М.В.Ломоносова объявляет творческий конкурс логотипа (эмблемы) ФНМ, работы принимаются с 21 августа до 15 сентября 2019 года. Участники - все, кто имеет или когда бы то ни было имел отношение к ФНМ МГУ: студенты, аспиранты, преподаватели, сотрудники, выпускники, а также все творческие люди из большой университетской семьи.

Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»
Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.