Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
фото: University of Michigan

Infox: Нанопокрытие помогает мозговым имплантам выжить в голове человека

Ключевые слова:  мозговые импланты, нановолокона, периодика, технология

Автор(ы): Ася Парфёнова

Опубликовал(а):  Никитина Елизавета Александровна

17 сентября 2009

Мозговые импланты резко увеличили срок своей жизни при помощи сложного композитного нанопокрытия. Так что у борцов с болезнями мозга появился шанс вылечить своих пациентов надолго.

Современные технологии уже позволяют помочь людям, страдающим нейродегенеративными заболеваниями, депрессией и эпилепсией. На данный момент болезни мозга лечат с помощью подкожных электродов, а также электродов, фиксируемых на поверхности мозга. Однако самые большие надежды медицина возлагает на проникающие в мозг микроэлектроды, которые смогут воздействовать на нервную систему более прицельно и точно.

Электромозговая схема

Как поверхностные электроды, так и погружные микроэлектроды-импланты действуют по двум схемам. Они либо стимулируют нейроны электрическими импульсами, подавляя или корректируя неправильные собственные сигналы мозга, либо принимают информацию в виде электрического импульса от работающего нейрона и передают ее на компьютер или к другим участкам нервной системы в обход неработающих, больных частей мозга.

Именно так работают специальные компьютерные программы, которые позволяют преобразовывать импульсы мозга в определенные команды. Например, еще в 2006 году исследователям из Вашингтонского университета (University of Washington) удалось сделать интерфейс, при помощи которого управление курсором осуществлялось «силой мысли». Подобные системы также позволяют полностью парализованным людям управлять инвалидным креслом. А в 2008 году рабочая группа под руководством Чета Морица (Chet Moritz) также из Вашингтонского университета решила не делать ставку на механические устройства. Ученые напрямую подключили мозг к парализованным рукам обезьянки, причем вполне успешно.

Однако у электродов, вводимых непосредственно в мозг, есть множество недостатков. Один из них – слишком короткое время жизни. Через несколько месяцев после имплантации они перестают функционировать. «Вы ведь хотите иметь возможность использовать их по меньшей мере пару лет после операции», — говорит Мохаммед Реза Абидиан (Mohammad Reza Abidian), сотрудник факультета биомедицинской инженерии Мичиганского университета (Department of Biomedical Engineering, University of Michigan). Вместе со своими коллегами Абидиан попытался улучшить технологию мозговых имплантов с помощью модификации поверхности микроэлектродов. «Существующие технологии не позволяют долго использовать электроды в большинстве случаев, так как ткани мозга отторгают имплант. Наша цель – увеличить их эффективность и время жизни», — добавил ученый.

Обертка для электрода

Покрытие, разработанное мичиганскими исследователями, состоит из трех компонентов, которые, работая совместно, позволяют имплантируемым электродам более мягко взаимодействовать с тканями мозга. Нанокомпозитное покрытие состоит из специального электропроводящего биосовместимого полимера, альгинатового гидрогеля, приготовленного на основе натуральных солей, выделяемых из водорослей и широко применяемых в медицине, и биоразлагаемых нановолокон, в объем которых были введены включения сильного противовоспалительного и иммунодепрессивного лекарственного средства дексаметазон.

Покрытие наносили пошагово. Сначала вытягиваемые из расплава тонкие волокна наматывали на электрод. Затем поверх волокон наносился водорослевый гель в смеси с мономерами будущего электропроводящего полимера. Последний затем образовывал трехмерную сеть в процессе электрополимеризации, электродом для которой служил собственно сам модифицируемый электрод-имплант.

Как работает покрытие

У каждой части покрытия своя роль. Гелеобразная масса служит матрицей для функциональных частей и обеспечивает биосовместимость с тканями организма. Нановолокна постепенно разлагаются, высвобождая дексаметазон. Это лекарственное средство подавляет иммунный отклик организма на посторонний материал и предотвращает инкапсуляцию — процесс создания замкнутого изолирующего барьера вокруг патологического включения в организме.

Электропроводящий полимер уменьшает сопротивление электродов. Лабораторные тесты показали, что покрытие снижает полное сопротивление электрода при переменном токе на 1−2 порядка.

Кроме электрических тестов ученые анализировали биосовместимость модифицированных электродов и динамику выделения лекарственных средств в среде, приближенной по своим свойствам к тканям человеческого мозга. В работе принимали участие и сотрудники Центра нейрокоммуникационных технологий (Center for Neural Communication Technology) Мичиганского университета. Именно они разработали и предоставили микроэлектроды. В ближайшем будущем исследователи планируют провести тесты новых модифицированных электродов на животных.

Дэвид Мартин (David Martin), соавтор Мохаммеда Резы Абидиана, создал частную исследовательскую компанию Biotectix при Мичиганском университете, которая планирует воплотить вновь созданную технологию в медицинскую реальность, говорится в пресс-релизе, опубликованном на сайте университета. Подробнее с методами и результатами экспериментов можно ознакомиться в статье, опубликованной в журнале Advanced Functional Materials. Микрофотография нановолокон с лекарственными включениями, являющаяся иллюстрацией к статье, была помещена на обложку номера.



Средний балл: 10.0 (голосов 3)

 


Комментарии
Палии Наталия Алексеевна, 14 октября 2009 18:52 
Нанопокрытие помогает мозговым имплантам выжить в голове человека - вообще-то проблема в том, чтобы дать возможность человеку выжить с имплантами. И чтобы улучшить биосовместь имплантов проводится наноструктурирование поверхности или создание покрытий. Много лет этим занимается, например,
Светлана Шаболовкая, наша соотечественница, ныне работающая в США

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

О правильной ориентации
О правильной ориентации

Самые интересные моменты лектория Нанограда 2020
Небольшой традиционный фоторепортаж о самых интересных лекционных моментах виртуального Цифрового Нанограда 2020 со всеми правильными ссылками.

ВТОРАЯ МОСКОВСКАЯ ОСЕННЯЯ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО ПЕРОВСКИТНОЙ ФОТОВОЛЬТАИКЕ (MAPPIC-2020)
Открыта регистрация на вторую Московскую осеннюю международную конференцию по перовскитной фотовольтаике (Moscow Autumn Perovskite Photovoltaics International Conference – MAPPIC-2020), которая состоится 26-28 октября 2020 года в смешанном, очном и дистанционном форматах.

Онлайн-школа РНФ-2020 «Аддитивные технологии: материалы, методы и перспективы»
7 октября НИТУ «МИСиС» совместно с Российским Научным Фондом проводит онлайн-школу для молодых ученых «Аддитивные технологии будущего: материалы, методы и перспективы». Участие в работе Школы является бесплатным. Школа будет проходить в онлайн-формате на платформе Zoom. Всю информацию участники получат по электронной почте.

Летние лектории для школьников
ФНМ
Сотрудники Факультета наук о материалах и химического факультета Московского государственного университета имени М.В.Ломоносова участвуют в лекториях двух летних школ, организованных Фондом Инфраструктурных и Образовательных Программ (группа РОСНАНО) - Нанограде и летней школе МФТИ.

Академия - университетам
Е.А.Гудилин, Ю.Г.Горбунова, С.Н.Калмыков
Российская Академия Наук и Московский университет во время пандемии реализовали пилотную часть проекта "Академия – университетам: химия и науки о материалах в эпоху пандемии". За летний период планируется провести работу по подключению к проекту новых ВУЗов, институтов РАН, профессоров РАН, а также по взаимодействию с новыми уникальными лекторами для развития структурированного сетевого образовательного проекта "Академия - университетам".

Материалы к защитам выпускных квалификационных работ бакалавров ФНМ МГУ 2020
Коллектив авторов
Защиты выпускных квалификационных работ (квалификация – бакалавр материаловедения) по направлению 04.03.02 - «химия, физика и механика материалов» на Факультете наук о материалах МГУ имени М.В.Ломоносова состоятся 16, 17, 18 и 19 июня 2020 г.

Технопредпринимательство в эпоху COVID-19

Небольшой опрос о том, как изменились подходы современного предпринимательства в контексте новых и возникающих форм ведения бизнеса, онлайн образования, дистанционных форм взаимодействия и коворкинга в эпоху пандемии COVID - 19.

Технонано

Технопредпринимательство - идея, которая принесет свои плоды при бережном культивировании и взращивании. И наша наноолимпиада, и Наноград от Школьной Лиги РОСНАНО, и проект Стемфорд, и другие замечательные инициативы - важные шаги на пути реализации этой и других идей, связанных с развитием новых высоких технологий в нашей стране и привлечением молодых талантов в эту вполне стратегическую область. Ниже приведен небольшой опрос, который позволит и нам, и вам понять, а что все же значит этот модный термин, и какова его суть.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.