Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1 (A) РЭМ изображение подложки, покрытой нанопропеллерами. (B) РЭМ-изображение индивидуального нанопропеллера. (C) Траектория броуновского движения нанопропеллера в жидкости в отсутствие магнитного поля.
Траектория единичного пропеллера в растворе, передвигающегося по заданной программе, "рисующей" соответствующие символы.
(A) 5 мкм микросфера SiO2, толкаемая нанопропеллером длиной 1.5 мкм и 200 нм в диаметре. (B) Траектории двух двигающихся в одном и том же магнитном поле нанопропеллеров от точки (s) до (e).

Создан самый быстрый управляемый нанообъект

Ключевые слова:  диоксид кремния, доставка лекарств, нанопропеллер

Опубликовал(а):  Тарасов Алексей Борисович

06 мая 2009

В последнее время достигнут значительный прогресс в манипулировании нанообъектами на поверхности и в высоком вакууме. В то же время передвижение нанообъектов в жидкостях пока осуществимо лишь в жидкокристаллических пленках, под воздействием электрического поля, в градиенте постоянного магнитного поля или при сопутствующем химическом разложении. Приложение однородного переменного магнитного поля, реализовать которое достаточно просто, может оказаться одним из наиболее эффективных способов дистанционного управления нанообъектами в жидких средах.

Исследователи из Гарвардского университета предложили простой метод одновременного создания большого количества наноструктурированных "пропеллеров" и впервые продемонстрировали нанообъекты, положение которых в жидкости можно контролировать с точностью до микрометров.

Пропеллер, имеющий длину 1-2 мкм и 200-300 нм в диаметре, представляет собой шарик SiO2 с винтовым хвостом, покрытый с одной стороны металлическим кобальтом. Вращаясь в переменном магнитном поле, пропеллер совершает поступательное движение, погружаясь в толщу жидкости.

Для создания таких устройств была использована методика осаждения под скользящим углом, позволяющая растить большое число спиралевидных структур одновременно. Для этого на кремниевую подложку был нанесен монослой 200-300 нм шариков из оксида кремния. Электронно-лучевое осаждение SiO2 из газовой фазы под углом 87о со скоростью 3 Å/с при постоянном вращении подложки со скоростью 0,07 об/минприводило к образованию спиралевидных «хвостов» на SiO2-шариках. Таким образом на каждом квадратном сантиметре подложки удавалось вырастить до 109 винтов. Выращенные пропеллеры были переосаждены на подложку при помощи ультразвука и покрыты с одной стороны 30 нм слоем кобальта при помощи термического испарения. После напыления кобальта подложка была помещена между обкладками электромагнита таким образом, чтобы пропеллеры приобрели магнитным момент, перпендикулярный большей оси. Для отслеживания передвижения пропеллера в жидкости его вторая половина была модифицирована люминофором.

Трехмерное управление перемещением пропеллера осуществлялось с помощью трех колец Гельмгольца, генерирующих поле порядка 6 мТл частотой до 170 Гц. Наблюдать вращение винта во время движения можно при помощи детектирования частоты, с которой флюоресцирующая сторона будет «мигать», поворачиваясь неметаллизированной стороной к датчику. Таким образом было установлено, что один оборот соответствует продвижению на ~200 нм.

Были также проведены опыты по воздействию таким пропеллером на другие объекты. Винт, двигающийся со скоростью 40 мкм/с в воде, создает усилие порядка пиконьютонов. Как было показано на примере «тарана» 5 мкм частицы, этого вполне достаточно, чтобы эффективно воздействовать на микрообъекты в растворе. Видеоролик данного процесса доступен на сайте журнала.

Чтоб продемонстрировать точность управления группой таких нанообъектов, в работе приводится покадровое изображение двух движущихся рядом пропеллеров, контролируемых магнитным полем. Видно, что их траектории практически полностью совпадают. Авторы утверждают, что это первый на сегодняшний день объект субмикронного размера, передвигающийся со скоростью 40мкм/с и контролируемый с точностью до 1 мкм. Дальнейшее исследование таких объектов может привести к значительному прогрессу в медицине, фармацевтике и реологии.




Комментарии
Анна Викторовна, 07 мая 2009 09:29 

Супер!Достойная работа!
Спасибо за столь интересную информацию, Алексей.
Я сам когда прочитал был в полном восторге! Посмотрите видеоролики на сайте, они общедоступны. Вообще фантастика! )
Алексей Борисович!
Спасибо за ознакомление с первым на сегодняшний день объектом субмикронного размера, передвигающимся со скоростью 40мкм/с и контролируемым с точностью до 1 мкм.
Работа впечатляет и даёт основание для утверждения. Этим начинаются исследования по электромагнитному управлению в наноструктурах.
Действительно здорово.
Возможно ли управлять тем же методом наноструктурами, размером 50нм.
не думаю, что их возможно аналогичным образом создать...
ого неожиданная новость, ребята из Гарворда- молодцы=)
Необычная и необычно классная идея!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Диоксид земляники
Диоксид земляники

VIII Международная Конференция «Деформация и разрушение материалов и наноматериалов»
VIII Международная Конференция «Деформация и разрушение материалов и наноматериалов» (http://dfmn.imetran.ru/) пройдет в Москве (ИМЕТ РАН) с 19 по 22 ноября 2019 г. В рамках Конференции пройдет Молодежная школа-конференция.

Более 770 площадок пожелали присоединиться к Всероссийскому химическому диктанту с международным участием 18 мая
Более 770 площадок подали заявки на участие во II Всероссийском химическом диктанте, который в этом году пройдет с международным участием 18 мая в 13:00. Мероприятие организовано Московским государственным университетом имени М.В. Ломоносова, Химическим факультетом МГУ и корпорацией «Российский учебник» при поддержке Ассоциации учителей и преподавателей химии.

Найдены превращающие свет в электричество камни
Ученые обнаружили возникновение электрического тока в неорганических системах, что напоминает первые этапы усваивания энергии Солнца бактериями и растениями в процессе фотосинтеза. Открытое явление протекает в различных минералах и почвах. В отличие от обычного фотосинтеза, в данном случае участвуют только неорганические соединения, которые не имеют отношения к деятельности живых форм.

Материалы к защитам магистерских квалификационных работ на ФНМ МГУ в 2019 году
Семенова Анна Александровна
21-24 мая 2019 года в лабораторном корпусе Б пройдут защиты магистерских диссертаций выпускниками ФНМ МГУ.

«Наука открывает огромные просторы для творчества»
Яна Хлюстова, Екатерина Мищенко
Об олимпиадах школьников и начале научного пути в интервью Indicator.Ru рассказала Екатерина Жигилева, студентка второго курса химического факультета МГУ им. Ломоносова.

Интервью с Константином Козловым - абсолютным победителем XIII Наноолимпиады
Семенова Анна Александровна
Школьник 11 класса Константин Козлов (г. Москва) стал абсолютным победителем Олимпиады "Нанотехнологии - прорыв в будущее!" 2018/2019 по комплексу предметов "физика, химия, математика, биология". О своих впечатлениях, увлечениях и немного о планах на будущее Константин поделился с нами в интервью.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.