Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.1 (A) РЭМ изображение подложки, покрытой нанопропеллерами. (B) РЭМ-изображение индивидуального нанопропеллера. (C) Траектория броуновского движения нанопропеллера в жидкости в отсутствие магнитного поля.
Траектория единичного пропеллера в растворе, передвигающегося по заданной программе, "рисующей" соответствующие символы.
(A) 5 мкм микросфера SiO2, толкаемая нанопропеллером длиной 1.5 мкм и 200 нм в диаметре. (B) Траектории двух двигающихся в одном и том же магнитном поле нанопропеллеров от точки (s) до (e).

Создан самый быстрый управляемый нанообъект

Ключевые слова:  диоксид кремния, доставка лекарств, нанопропеллер

Опубликовал(а):  Тарасов Алексей Борисович

06 мая 2009

В последнее время достигнут значительный прогресс в манипулировании нанообъектами на поверхности и в высоком вакууме. В то же время передвижение нанообъектов в жидкостях пока осуществимо лишь в жидкокристаллических пленках, под воздействием электрического поля, в градиенте постоянного магнитного поля или при сопутствующем химическом разложении. Приложение однородного переменного магнитного поля, реализовать которое достаточно просто, может оказаться одним из наиболее эффективных способов дистанционного управления нанообъектами в жидких средах.

Исследователи из Гарвардского университета предложили простой метод одновременного создания большого количества наноструктурированных "пропеллеров" и впервые продемонстрировали нанообъекты, положение которых в жидкости можно контролировать с точностью до микрометров.

Пропеллер, имеющий длину 1-2 мкм и 200-300 нм в диаметре, представляет собой шарик SiO2 с винтовым хвостом, покрытый с одной стороны металлическим кобальтом. Вращаясь в переменном магнитном поле, пропеллер совершает поступательное движение, погружаясь в толщу жидкости.

Для создания таких устройств была использована методика осаждения под скользящим углом, позволяющая растить большое число спиралевидных структур одновременно. Для этого на кремниевую подложку был нанесен монослой 200-300 нм шариков из оксида кремния. Электронно-лучевое осаждение SiO2 из газовой фазы под углом 87о со скоростью 3 Å/с при постоянном вращении подложки со скоростью 0,07 об/минприводило к образованию спиралевидных «хвостов» на SiO2-шариках. Таким образом на каждом квадратном сантиметре подложки удавалось вырастить до 109 винтов. Выращенные пропеллеры были переосаждены на подложку при помощи ультразвука и покрыты с одной стороны 30 нм слоем кобальта при помощи термического испарения. После напыления кобальта подложка была помещена между обкладками электромагнита таким образом, чтобы пропеллеры приобрели магнитным момент, перпендикулярный большей оси. Для отслеживания передвижения пропеллера в жидкости его вторая половина была модифицирована люминофором.

Трехмерное управление перемещением пропеллера осуществлялось с помощью трех колец Гельмгольца, генерирующих поле порядка 6 мТл частотой до 170 Гц. Наблюдать вращение винта во время движения можно при помощи детектирования частоты, с которой флюоресцирующая сторона будет «мигать», поворачиваясь неметаллизированной стороной к датчику. Таким образом было установлено, что один оборот соответствует продвижению на ~200 нм.

Были также проведены опыты по воздействию таким пропеллером на другие объекты. Винт, двигающийся со скоростью 40 мкм/с в воде, создает усилие порядка пиконьютонов. Как было показано на примере «тарана» 5 мкм частицы, этого вполне достаточно, чтобы эффективно воздействовать на микрообъекты в растворе. Видеоролик данного процесса доступен на сайте журнала.

Чтоб продемонстрировать точность управления группой таких нанообъектов, в работе приводится покадровое изображение двух движущихся рядом пропеллеров, контролируемых магнитным полем. Видно, что их траектории практически полностью совпадают. Авторы утверждают, что это первый на сегодняшний день объект субмикронного размера, передвигающийся со скоростью 40мкм/с и контролируемый с точностью до 1 мкм. Дальнейшее исследование таких объектов может привести к значительному прогрессу в медицине, фармацевтике и реологии.




Комментарии
Анна Викторовна, 07 мая 2009 09:29 

Супер!Достойная работа!
Спасибо за столь интересную информацию, Алексей.
Я сам когда прочитал был в полном восторге! Посмотрите видеоролики на сайте, они общедоступны. Вообще фантастика! )
Алексей Борисович!
Спасибо за ознакомление с первым на сегодняшний день объектом субмикронного размера, передвигающимся со скоростью 40мкм/с и контролируемым с точностью до 1 мкм.
Работа впечатляет и даёт основание для утверждения. Этим начинаются исследования по электромагнитному управлению в наноструктурах.
Действительно здорово.
Возможно ли управлять тем же методом наноструктурами, размером 50нм.
не думаю, что их возможно аналогичным образом создать...
ого неожиданная новость, ребята из Гарворда- молодцы=)
Необычная и необычно классная идея!

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Только ножки торчат
Только ножки торчат

Конкурс логотипа ФНМ МГУ
Факультет наук о материалах МГУ имени М.В.Ломоносова объявляет творческий конкурс логотипа (эмблемы) ФНМ, работы принимаются с 21 августа до 15 сентября 2019 года. Участники - все, кто имеет или когда бы то ни было имел отношение к ФНМ МГУ: студенты, аспиранты, преподаватели, сотрудники, выпускники, а также все творческие люди из большой университетской семьи.

Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»
Продолжается прием статей в 11-й выпуск Межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов»

Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ”
Участие НТ-МДТ Cпектрум Инструментс в конференции “ГРАФЕН: МОЛЕКУЛА И 2D КРИСТАЛЛ” 5-9 августа 2019 года в Новосибирске

3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве
И.В.Яминский
Материалы лекции проф. МГУ, д.ф.-м.н., генерального директора Центра Перспективных технологий И.В.Яминского "3D нанотехнологии в физике, химии, биологии, медицине и инженерном искусстве". 3D принтер, сканирующий зондовый микроскоп и фрезерный станок. Что общего между ними? Как конструировать их своими руками? Небольшой экскурс в практические нанотехнологии. Поучительная история о создании сканирующего туннельного микроскопа. От идеи до нобелевской премии за 5 лет. Взгляд в микромир – от атомов и молекул до живых клеток. Как взвесить массу одного атома? Вирусы и бактерии – наши друзья или враги? Медицинские приложения нанотехнологий – нанобиосенсоры для обнаружения биологических агентов.

Материалы и пленочные структуры спинтроники и стрейнтроники
В.А.Кецко
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. В сообщении даны материалы лекции д.х.н., в.н.с. ИОНХ РАН В.А.Кецко "Материалы и пленочные структуры спинтроники и стрейнтроники".

Лекции и семинары от ФНМ МГУ на Нанограде
Е.А.Гудилин
Девятый Наноград, проходивший в Ханты - Мансийске, собрал талантливых школьников, интересных лекторов и преподавателей в области наноматериалов, нанотехнологий и технопредпринимательства. Ниже даны материалы лекций и семинаров представителя ФНМ МГУ проф., д.х.н. Е.А.Гудилина.

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.