Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис.2. Устройства на основе МЭМС. (а) подвижное соединение микрошестеренок. (б) микродинамометр, позволяющий измерять тангенциальные и нормальные силы, а также оценивать микротрение. Подвижный стержень и дуговая шкала отмечены стрелкой. (в) микроактюатор. (г) приводной микромеханизм. (д) оптический переключатель. Зубчатый кремниевый диск может быть механически выставлен в 4 положения, условно соответствующих сигналам (0,0), (1,0), (0,1) и (1,1) (два положения отмечены стрелками); информация считывается неподвижным сфокусированным лазерным лучом. (е) передаточное микроустройство, преобразующее вращательное движение в поступательное. (ж) подвижное кремниевое микрозеркало (показано стрелкой), которое может изменять угол наклона за счет поступательного движения поршня, приводимого в движение передаточным устройством (е). (з) Оптический затвор. (и) Трехцилиндровый паровой двигатель: вода внутри каждого цилиндра нагревается электрическим током, и образовавшийся пар выталкивает поршень, при охлаждении жидкости поршень втягивается обратно в цилиндр под действием капиллярных сил. Адаптировано на основе микрофотографий с сайта Sandia National Laboratories (http://www.mems.sandia.gov).

Микроэлектромеханические системы (MEMS)

Ключевые слова:  наноазбука, периодика

Автор(ы): Наноазбука (первая версия)

Опубликовал(а):  Гудилин Евгений Алексеевич

18 декабря 2008

«Почему бы нам не сверлить отверстия, резать или спаивать, штамповать или формовать предметы на бесконечно малом уровне?»

Р.Фейнман. «Там внизу много места», 1959 г

Если Вы загляните в Тульский музей оружия, то найдете в нем не только богатейшее собрание экспонатов на военную тему. Как известно, Тула – это Родина не только самоваров, пряников и оружия. Здесь, если верить Н.С. Лескову, жил удивительный мастер Левша, сумевший подковать английскую блоху; здесь же сегодня живут мастера, создающие миниатюрные копии обычных и необычных предметов. Поэтому в музее Вас будет ждать сюрприз – коллекция действующего! микроскопического оружия, рассмотреть которую в деталях можно только под микроскопом. Вес самого маленького револьвера составляет всего 5.5 г. Поэтому кажется просто невероятным, что его барабан способен вращаться, а сам револьвер вполне может стрелять крошечными пулями калибра 1.5 мм.

Но сегодня уже и эти экспонаты не удивят ученого: значительно более сложные микроразмерные механические устройства производятся в промышленных масштабах и окружают человека повсюду – мы просто не можем их увидеть! Причем особый интерес представляют не столько просто механические, сколько микроэлектро-механические системы или МЭМС, способные на микроуровне преобразовывать механическую энергию в электрические или оптические сигналы, и наоборот. Создание МЭМСов стало возможно только в последнее время, преимущественно благодаря стремительному развитию полупроводниковых технологий.

В конце 50-х годов XX в. известный физик Р.Фейнман публично пообещал 1000 долларов (немалая по тем временам сумма) тому, кто создаст электрический мотор размером менее 1/64 дюйма (примерно 0.4 мм). Вызов принял молодой ученый У.Маклеллан, который вручную собрал требуемое устройство с помощью пинцета и оптического микроскопа. Сейчас микромотор Маклеллана можно увидеть в музее Калифорнийского технологического института. Интерес к микроэлектромеханическим системам постепенно охватывал все больше университетов и компаний, и уже к середине 80-х годов прошлого века успехи в области разработки МЭМС привели к созданию первых коммерческих продуктов на их основе.

Как правило, к МЭМС (Рис.1, Рис.2) относят механические устройства размером от миллиметра до микрометра. Важно отметить, что на таком масштабе законы классической механики не всегда применимы. Поскольку отношение поверхности к объему для МЭМС на порядки больше, чем для макроскопических механических устройств, особое значение приобретают поверхностные эффекты, связанные с трением, электростатическими взаимодействиями и смачиваемостью.

Основным материалом для изготовления МЭМС является кремний, что связано с его хорошими механическими свойствами и отработанной технологией структурирования, разработанной для создания современных интегральных схем и изделий наноэлектроники. Все это позволяет интегрировать МЭМС с уже существующими электронными компонентами. В то же время, несмотря на массовое производство последних, монокристаллический кремний остается весьма дорогим материалом, поэтому МЭМС нередко изготавливают на основе полимеров. Иногда для производства МЭМС используют и металлы (золото, никель, алюминий, хром, титан, вольфрам и др.). Как правило, изготовление МЭМС оказывается дешевле традиционной сборочной технологии, применяемой для создании макроскопических механических устройств, поскольку при создании МЭМС расходуется меньше материала, а промышленное производство МЭМС является параллельным процессом, при котором за один цикл на одной кремниевой пластине можно произвести сразу сотни готовых устройств. Кроме того, при создании сложных устройств, состоящих из множества компонентов, МЭМС-технология позволяет повысить надежность (поскольку все компоненты интегрированы в одной плате) и эффективность (т.к. компоненты расходуют мало энергии вследствие своего микроскопического размера и близкого расположения элементов).

Чрезвычайно малый размер позволяет использовать МЭМС в различных миниатюрных устройствах начиная от механических часов и заканчивая имплантатами для человека.. Можно выделить несколько применений МЭМС, получивших наиболее широкое распространение.

Акселерометры. Пожалуй, наиболее коммерчески успешными устройствами на
основе МЭМС в настоящее время являются миниатюрные устройства для измерения ускорений. В частности, их широко используют в устройствах, контролирующих раскрытие подушек безопасности в автомобилях при авариях.

Микрозеркала. Устройства, использующие системы подвижных зеркал шириной всего 10 микрометров предложила компания Texas Instruments. Угол наклона каждого зеркала независимо управляется МЭМС-устройством, благодаря чему можно либо отражать, либо блокировать свет. Подобные системы используются в проекторах для графических презентаций. В свою очередь, благодаря совмещению акселерометров на основе МЭМС для регистрации внешних вибраций с МЭМС-микрозеркалами для коррекции лазерного луча, компания Xerox создала лазерные принтеры с чрезвычайно высоким разрешением печати.

Микрокапиллярные устройства. Кремниевые чипы с микроскопическими каналами могут быть использованы для адресной in vivo доставки контролируемых количеств лекарственных препаратов. В частности, специально для больных сахарным диабетом было разработано интегрированное МЭМС-устройство, объединяющие сенсор на глюкозу и диспергатор инсулина. Микрокапиллярные устройства на основе МЭМС могут использоваться в струйных принтерах для нанесения чернил на бумагу.

Биомедицинские имплантаты. Недавно были созданы кремниевые МЭМС-устройства, содержащие звуковой сенсор и микропроцессор, который раскладывает звуковые волны на Фурье-гармоники. Устройство имплантируется непосредственно в человеческое ухо, после чего полученные Фурье-компоненты напрямую передаются слуховому нерву, благодаря чему глухие люди обретают возможность слышать. В настоящее время разрабатываются аналогичные устройства для восстановления зрения. Как ожидается, рынок биомедицинских имплантатов на основе МЭМС в ближайшее время будет стремительно расти.

Помимо перечисленных применений, на основе МЭМС созданы оптические переключатели и затворы, сенсоры напряжений и давления, гироскопы и даже виброчувствительные джойстики в новых игровых приставках Нинтендо. Размер МЭМС уменьшается от года к году открывая новые перспективы для их использования..., и лишь наше воображение способно подсказать, какие еще удивительные МЭМС-устройства появятся на свет в ближайшем будущем. Уже сегодня множество элементов конструкции МЭМС лежит в нанодиапазоне, открывая тем самым новую эру микросистемотехники – эру «наноэлектромеханических систем» и «наноактюаторов».

Литература

C. P. Poole, F. J. Owens, Introduction to Nanotechnology Wiley-Interscience 2003, p. 400


В статье использованы материалы: Нанометр


Средний балл: 9.6 (голосов 7)

 


Комментарии
Рулев Максим Игоревич, 18 декабря 2008 20:10 
круто...)))))))))
интересно, каким образом будет возможно внедрить эти технологии вжизнь и когда?

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Тесное соседство
Тесное соседство

4 февраля объявили лауреатов V Всероссийской премии «За верность науке»
4 февраля в здании Минобрнауки РФ состоялась торжественное награждение лауреатов V Всероссийской премии «За верность науке». 11 научно-просветительских проектов были отмечены престижной наградой.

Всероссийский съезд учителей и преподавателей химии
5 февраля в Московском университете в Шуваловском корпусе МГУ состоится Всероссийский съезд учителей и преподавателей химии, посвященный Международному году Периодической таблицы химических элементов, начало - 10 часов.

II Всероссийский химический диктант пройдет 18 мая 2019 года
В 2019 году периодическому закону Дмитрия Менделеева исполнится 150 лет! В честь великого открытия этот год объявлен Международным годом Периодической таблицы химических элементов. Одним из наиболее ярких событий, приуроченных к этому году, станет II Всероссийский химический диктант, который пройдет 18 мая и который в этом году выходит на международный уровень. Мероприятие было анонсировано в рамках церемонии открытия Международного года Периодической таблицы химических элементов 29 января 2019 года в Париже, в штаб-квартире ЮНЕСКО.

Самые необычные таблицы Менделеева на выставке Международного года Периодической таблицы химических элементов

6-8 февраля в Российской академии наук состоялось торжественное открытие Международного года периодической таблицы химических элементов в России и приуроченная к этому масштабная интерактивная выставка

Почувствовать живое...
Е.А.Гудилин, А.А.Семенова, Н.А.Браже
Неразрушающее исследование живых клеток и клеточных структур является в настоящее время важным направлением научных изысканий, которые во многих зарубежных и российских научных группах направлены на достижение вполне прагматической цели – разработку новых принципов биомедицинской диагностики и эффективных подходов в нарождающейся персональной медицине.

Российская газета: Перевернуть пирамиду. Президент РАН: как повысить наши шансы на Нобеля
Юрий Медведев
Почему Россия по числу Нобелей отстает от ведущих стран мира, уступая, например, даже маленькой Швейцарии? Замалчиваются ли достижения отечественных ученых? Почему без привлечения в науку российского бизнеса мы не сможем успешно конкурировать в борьбе за престижную научную премию? Об этом корреспондент "РГ" беседует с президентом РАН Александром Сергеевым, который побывал в Стокгольме на вручении Нобелевских премий и поделился своими впечатлениями.

Инновационные системы: достижения и проблемы
Олег Фиговский, Валерий Гумаров

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.