Нанотехнологическое сообщество Нанометр, все о нанотехнологиях
на первую страницу Новости Публикации Библиотека Галерея Сообщество Объявления Олимпиада ABC О проекте
 
  регистрация
помощь
 
Рис. 1. Вверху: схематические изображения многофункциональной частицы и полимерной пленки;
внизу: фотографии частиц и сечения пленки.
Изменение намагниченности пленки в переменном электрическом поле с частотой 0.2 Гц.
Изменение намагниченности пленки в синусоидальном электрическом поле с частотой 1 Гц. При отключении электрического поля намагниченность исчезает за несколько секунд.

Магнитный и электрический моменты подружились в новом материале

Ключевые слова:  гибкая электроника, композит, магнитный материал, МЭМС, полимеры

Опубликовал(а):  Трусов Л. А.

24 октября 2008

Исследователи из Harvard University и Xerox PARC (США) изготовили материал, намагниченность которого определяется приложенным к нему электрическим полем. В основу разработки легла технология электронной бумаги под названием Gyricon.

Сначала ученые стандартным методом распыления полиэтилена посредством вращающегося диска (spinning disk atomization) получили двухцветные микросферы. В процессе синтеза частицы были наэлектризованы, т.е. представляли собой электрические диполи. Кроме того, в одну из половинок были помещены ферромагнитные наночастицы.

Далее частицы были диспергированы в полидиметилсилоксане, из которого методом spin-coating была получена пленка толщиной 400 мкм. После обработки маслом (Isopar L) полимерная пленка разбухла, а вокруг каждой полиэтиленовой частицы образовалась полость, наполненная маслом. Таким образом, частицы получили возможность вращаться внутри пленки (рис. 1).

К пленке одновременно приложили параллельные магнитное и электрическое поле, чтобы собственные электрические и магнитные моменты частиц были сонаправленны. После этого при появлении электрического поля полимерная пленка намагничивалась.

Обычно через некоторое время после отключения электрического поля магнитное поле тоже пропадало вследствие диполь-дипольных взаимодействий между частицами. Оказалось, что время релаксации сильно зависит от размеров полостей и природы наполняющей жидкости. Дело в том, что электрическое поле не только поворачивает частицы, но и вдавливает их в стенку полости. Так, в переменном электрическом поле возникает гистерезис, связанный с тем, что для отклеивания частицы от стенки необходимо приложить некоторый потенциал (рис. 3).

По словам авторов, частицы, в которых объединены магнитный и электрический моменты, получены впервые. Такой материал может оказаться интересным для применений в микрофлюидике, МЭМС и гибкой электронике. Работа «Voltage-Controllable Magnetic Composite Based on Multifunctional Polyethylene Microparticles» опубликована в журнале Small.


Источник: Wiley InterScience



Комментарии
Владимир Владимирович, 24 октября 2008 05:10 
Здорово!
И заголовок, и перевод, и суть!
Акбашев А., 24 октября 2008 08:57 
Любопытное исследование, конечно, но...
толщина пленки 400 мкм, размер шариков (шарищ?) около 70 мкм в диаметре. Мне кажется эти размеры слишком большие, чтобы использовать их во всяких там спинтрониках и т.п. делах. Сенсоры нужны нанометровых масштабов. Причем, насколько я вижу, вектор намагниченности после приложения электрического поля будет паралелен вектору поляризации, что может создать некоторые трудности при инженерной "проектировке" какого-либо устройства, работающего на принципе преобразования полей.
Интересно
Не очень понятно, как можно распылением на вращающемся диске ("стандартным методом") получить двуцветные микросферы.
Нанобаловство. (Или микро- ?)

Я думаю с технологий электретов все знакомы? Это по сути одно и то же. Готовим электрет, наполненный магнетитом. Далее морозим его жидким азотом и крошим в порошок. Усе. Далее только мелкие уточнения к технологии.

Здесь использован более хитрый принцип изготовления и продукт получается покачественнее, а так...
И да, и нет.
Скорее всего это действительно электрет с магнетитом (оригинальная статья недоступна). Но метод вращающегося диска имеет дело с расплавом (без стадии порошка).
Видимо, в зоне диска присутствует градиент электромагнитного поля - чтобы шарик, образующийся на диске из расплава полиэтилена (с магнетитом) в этом поле застывал. Но как они получаются такие аккуратные, пополам с магнетитом? "Хитрый принцип", однако..
fozgen, 24 октября 2008 11:26 
Один из классических методов приготовления янусовских частиц - расплав с двумя типами допантов подается с двух сторон вращающегося диска. Условия подобраны так, что образуются частицы, состоящие поровну из обоих типов.
Есть и другие методики, где можно получать подобные частицы размером в пару сотен нанометров. А если изменить подход и готовить гетеродуплеты, то можно получать нанометровые частицы.
Статья интересна именно идеей, удивительно, что этого еще никто не делал.
Трусов Л. А., 24 октября 2008 11:32 
вектор намагниченности после приложения электрического поля будет паралелен вектору поляризации, что может создать некоторые трудности при инженерной "проектировке" какого-либо устройства

никто не мешает направить его в любую другую сторону

Для того чтобы оставить комментарий или оценить данную публикацию Вам необходимо войти на сайт под своим логином и паролем. Зарегистрироваться можно здесь

 

Новогодняя елочка (Christmas tree? Chemistree! )
Новогодняя елочка (Christmas tree? Chemistree! )

На XXI Менделеевском съезде награждены выдающиеся ученые-химики
11 сентября 2019 года в Санкт-Петербурге на XXI Менделеевском съезде по общей и прикладной химии объявлены победители премии выдающимся российским ученым в области химии. Премия учреждена Российским химическим обществом им. Д.И.Менделеева совместно с компанией Elsevier с целью продвижения и популяризации науки, поощрения выдающихся ученых в области химии и наук о материалах.

Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых
Россия подала в ЮНЕСКО заявку на учреждение премии имени Менделеева для молодых ученых. Об этом премьер-министр РФ Дмитрий Медведев сообщил, открывая встречу с нобелевскими лауреатами, руководителями химических обществ, представителями международных и российских научных организаций.

Перст-дайджест
В новом выпуске бюллетеня «ПерсТ»: Синтез “перламутровых” нанокомпозитов с помощью бактерий. Оптомагнитный нейрон.Устойчивость азотных нанотрубок. Электронные характеристики допированных фуллереновых димеров.

Люди, создающие новые материалы: от поколения X до поколения Z
Е.В.Сидорова
Самые диковинные экспонаты научной выставки, организованной в Москве в честь Международного года Периодической таблицы химических элементов в феврале 2019 г., можно было рассмотреть только "вооруженным глазом»: Таблица Д.И.Менделеева размером 5.0 × 8.7 мкм и нанопортрет первооткрывателя периодического закона великолепно демонстрировали возможности динамической АСМ-литографии на сканирующем зондовом микроскопе. Миниатюрные произведения представили юные участники творческих конкурсов XII Всероссийкой олимпиады по нанотехнологиям, когда-то задуманной академиком Ю.Д.Третьяковым — основателем факультета наук о материалах (ФНМ) Московского государственного университета имени М.В.Ломоносова. О том, как подобное взаимодействие со школьниками и студентами помогает сохранить своеобразие факультета и почему невозможно воплощать идею междисциплинарного естественнонаучного образования, относясь к обучению как к конвейеру, редактору журнала «Природа» рассказал заместитель декана ФНМ член-корреспондент РАН Е.А.Гудилин.

Как наночастицы применяются в медицине?
А. Звягин
В чем преимущества наночастиц? Как они помогают ученым в борьбе с раком? Биоинженер Андрей Звягин о наночастицах в химиотерапии, имиджинговых системах и борьбе с раком кожи.

Медицинская керамика: какими будут имплантаты будущего?
В.С. Комлев, Д. Распутина
Почему керамические изделия применяются в хирургии? Какие технологии используются для создания имплантатов? Материаловед Владимир Комлев о том, почему керамика используется в медицине, как на ее основе создаются имплантаты и какие перспективы у биоинженерии

Технопредпринимательство на марше

Мы традиционно просим вас высказать свои краткие суждения по вопросу технопредпринимательства и проектной деятельности школьников. Для нас очевидно, что под технопредпринимательством и под проектной деятельностью школьников каждый понимает свое, но нам интересно ваше мнение, заодно вы сможете увидеть по мере прохождения опроса, насколько оно совпадает или отличается от мнения остальных. Ждем ваших ответов!

О наноолимпиаде замолвите слово...

Прошла XII Всероссийская олимпиада "Нанотехнологии - прорыв в Будущее!" Мы надеемся, что нам для улучшения организации последующих наноолимпиад поможет электронное анкетирование. Мы ждем Ваших замечаний, пожеланий, предложений. Спасибо заранее!

Опыт обучения в области нанотехнологического технопредпринимательства

В этом опросе мы просим поделиться опытом и Вашим отношением к нанотехнологическому технопредпринимательству и смежным областям. Заранее спасибо за Ваше неравнодушие!



 
Сайт создан в 2006 году совместными усилиями группы сотрудников и выпускников ФНМ МГУ.
Сайт модернизирован для ресурсной поддержки проектной деятельности учащихся в рамках ГК 16.647.12.2059 (МОН РФ)
Частичное или полное копирование материалов сайта возможно. Но прежде чем это делать ознакомьтесь с инструкцией.